Applications of the Phase-Field Method for the Solidification of Microstructures in Multi-Component Systems

The solidification of multicomponent alloys is of high technical and scientific importance. In this review, we describe the ongoing research of the phase-field method for the solidification of dendritic and eutectic structures. Therefore, the corresponding experimental and theoretical investigations are presented. First, an overview of the historical development in solidification research is given. Thereafter, the ongoing progress of the phase-field models is reviewed. Then, we address the experimental and simulative investigations of different forms of dendritic and eutectic solidification. We distinguish between thermal and solutal dendritic growth as well as thin-sample and Bridgman furnace experiments of eutectic growth. Impurity-driven Mullins-Sekerka instabilities like cell structures, eutectic colonies and spiral dendritic growth are presented. Then, validation methods for the comparison between simulations, experiments and theoretical approaches are addressed. Subsequently, related aspects to simulate solidification are introduced. Especially, further physical aspects and computational optimizations are considered. Concluding, possible future research in the context of the phase-field method for solidification is discussed.

[1]  Juan C. Ramirez,et al.  Three-dimensional phase-field simulations of the effect of convection on free dendritic growth , 2005 .

[2]  László Gránásy,et al.  Cahn–Hilliard theory with triple-parabolic free energy. II. Nucleation and growth in the presence of a metastable crystalline phase , 2000 .

[3]  B. Nestler,et al.  3D Synchrotron Imaging of a Directionally Solidified Ternary Eutectic , 2016, Metallurgical and Materials Transactions A.

[4]  Ruijie Zhang,et al.  Phase field simulation for non-isothermal solidification of multicomponent alloys coupled with thermodynamics database , 2013 .

[5]  James A. Warren,et al.  PHASE-FIELD SIMULATION OF SOLIDIFICATION 1 , 2002 .

[6]  Alain Karma,et al.  Eutectic colony formation: a phase-field study. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Suzana G. Fries,et al.  Simulation of microsegregation and microstructural evolution in directionally solidified superalloys , 2000 .

[8]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[9]  Toshio Suzuki,et al.  Phase-field model for solidification of ternary alloys coupled with thermodynamic database , 2003 .

[10]  Jeff Simmons,et al.  Phase field modeling of simultaneous nucleation and growth by explicitly incorporating nucleation events , 2000 .

[11]  H. W. Kerr,et al.  Unidirectional solidification of monovariant eutectic Cu-Mg-Ni alloys: I. Planar interface stability criterion , 1972 .

[12]  Geoffrey B. McFadden,et al.  Solute trapping and solute drag in a phase-field model of rapid solidification , 1998 .

[13]  Wilfried Kurz,et al.  Gerichtet erstarrte eutektische Werkstoffe : Herstellung, Eigenschaften und Andwendungen von In-situ-Verbundwerkstoffen , 1975 .

[14]  G. Faivre,et al.  Morphological instabilities of lamellar eutectic growth fronts: a survey of recent experimental and numerical results , 1996 .

[15]  R. Sekerka,et al.  A Stability Function for Explicit Evaluation of the Mullins‐Sekerka Interface Stability Criterion , 1965 .

[16]  D. G. McCartney,et al.  The structures expected in a simple ternary eutectic system: Part II. The Al-Ag-Cu ternary system , 1980 .

[17]  M. Plapp,et al.  Eutectic and peritectic solidification patterns , 2016 .

[18]  Zhipeng Guo,et al.  An implicit parallel multigrid computing scheme to solve coupled thermal-solute phase-field equations for dendrite evolution , 2012, J. Comput. Phys..

[19]  James A. Warren,et al.  The phase-field method: simulation of alloy dendritic solidification during recalescence , 1996 .

[20]  Tae Wook Heo,et al.  Phase-Field Modeling of Nucleation in Solid-State Phase Transformations , 2014, JOM.

[21]  Feng Liu,et al.  Application of the maximal entropy production principle to rapid solidification: A multi-phase-field model , 2013 .

[22]  Harald Garcke,et al.  A Diffuse Interface Model for Alloys with Multiple Components and Phases , 2004, SIAM J. Appl. Math..

[23]  A. Scotch,et al.  Determination of the eutectic structure in the Ag-Cu-Sn system , 2002 .

[24]  László Gránásy,et al.  Multiphase solidification in multicomponent alloys , 2004 .

[25]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[26]  Dong-Hee Yeon,et al.  Phase-field model for multicomponent alloy solidification , 2005 .

[27]  Alexander Vondrous,et al.  Parallel computing for phase-field models , 2014, Int. J. High Perform. Comput. Appl..

[28]  Irena Pawlow,et al.  A mathematical model of dynamics of non-isothermal phase separation , 1992 .

[29]  Chih-Jen Shih,et al.  Quantitative phase field simulation of deep cells in directional solidification of an alloy , 2005 .

[30]  Nikolas Provatas,et al.  Phase-Field Methods in Materials Science and Engineering , 2010 .

[31]  J. Warren,et al.  Phase-field models for eutectic solidification , 2004 .

[32]  Geoffrey B. McFadden,et al.  A ξ-vector formulation of anisotropic phase-field models: 3D asymptotics , 1996, European Journal of Applied Mathematics.

[33]  S. Akamatsu,et al.  ANISOTROPY-DRIVEN DYNAMICS OF CELLULAR FRONTS IN DIRECTIONAL SOLIDIFICATION IN THIN SAMPLES , 1998 .

[34]  L. Landau,et al.  On the theory of superconductivity , 1955 .

[35]  M. Grant,et al.  Phase-field modeling of eutectic growth. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Department of Physics,et al.  EFFICIENT COMPUTATION OF DENDRITIC MICROSTRUCTURES USING ADAPTIVE MESH REFINEMENT , 1998 .

[37]  B. Nestler A 3D parallel simulator for crystal growth and solidification in complex alloy systems , 2005 .

[38]  M. Plapp Unified derivation of phase-field models for alloy solidification from a grand-potential functional. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  M. Herrera-Trejo,et al.  Transactions of the Indian Institute of Metals , 2007 .

[40]  Gustav Amberg,et al.  Phase-field simulations of non-isothermal binary alloy solidification , 2001 .

[41]  Influence of Interphase Anisotropy on Lamellar Eutectic Growth Patterns , 2015, Transactions of the Indian Institute of Metals.

[42]  T. Pusztai,et al.  Nucleation and bulk crystallization in binary phase field theory. , 2002, Physical review letters.

[43]  F. Durand,et al.  Effects of growth rate on the morphology of monovariant eutectics: MnSb(Sb,Bi) and MnSb(Sb,Sn) , 1972 .

[44]  T. Umeda,et al.  Three-Phase Planar Eutectic Growth Models for a Ternary Eutectic System , 1999 .

[45]  Simulations of the initial transient during directional solidification of multicomponent alloys using the phase field method , 2000 .

[46]  T. Pusztai,et al.  Phase field simulation of liquid phase separation with fluid flow , 2005 .

[47]  Sabine Bottin-Rousseau,et al.  Lamellar eutectic growth with anisotropic interphase boundaries: Experimental study using the rotating directional solidification method , 2012 .

[48]  T. Pusztai,et al.  Crystal nucleation and growth in binary phase-field theory , 2002 .

[49]  A. Karma,et al.  Phase-field model of dendritic sidebranching with thermal noise. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Geoffrey B. McFadden,et al.  Phase-field model for solidification of a eutectic alloy , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[51]  B. Blanpain,et al.  An introduction to phase-field modeling of microstructure evolution , 2008 .

[52]  Toshimichi Fukuoka,et al.  Phase-field simulation during directional solidification of a binary alloy using adaptive finite element method , 2005 .

[53]  B. Böttger,et al.  Phase-Field Modeling and Experimental Observation of Microstructures in Solidifying Sn-Ag-Cu Solders , 2013, Journal of Electronic Materials.

[54]  U. Hechta,et al.  Multiphase solidification in multicomponent alloys , 2004 .

[55]  Eutectic dynamics: A host of new states. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  A. Choudhury,et al.  Effect of Surface Energy Anisotropy on the Stability of Growth Fronts in Multiphase Alloys , 2015, Transactions of the Indian Institute of Metals.

[57]  P. Jimack,et al.  Solute trapping and the effects of anti-trapping currents on phase-field models of coupled thermo-solutal solidification , 2010 .

[58]  M Plapp,et al.  Quantitative phase-field modeling of two-phase growth. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  J. Warren,et al.  Phase field approach to heterogeneous crystal nucleation in alloys , 2009 .

[60]  R. Trivedi,et al.  Solidification microstructures and solid-state parallels: Recent developments, future directions , 2009 .

[61]  Chung-Wen Lan,et al.  Efficient adaptive phase field simulation of directional solidification of a binary alloy , 2003 .

[62]  I. Steinbach,et al.  Dendritic solidification in undercooled Ni–Zr–Al melts: Experiments and modeling , 2009 .

[63]  Heike Emmerich,et al.  Advances of and by phase-field modelling in condensed-matter physics , 2008 .

[64]  Won Tae Kim,et al.  Computer simulations of two-dimensional and three-dimensional ideal grain growth. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Johannes Hötzer,et al.  Analytics for microstructure datasets produced by phase-field simulations , 2016 .

[66]  B. Nestler,et al.  Influence of solid-solid interface anisotropy on three-phase eutectic growth during directional solidification , 2013 .

[67]  S. Akamatsu,et al.  Spiral two-phase dendrites. , 2010, Physical review letters.

[68]  B. Nestler,et al.  Comparison of phase-field and cellular automaton models for dendritic solidification in Al–Cu alloy , 2012 .

[69]  Karma,et al.  Phase-field model of eutectic growth. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[70]  B. Nestler,et al.  A method for coupling the phase-field model based on a grand-potential formalism to thermodynamic databases , 2015 .

[71]  Ingo Steinbach,et al.  A generalized field method for multiphase transformations using interface fields , 1999 .

[72]  Ingo Steinbach,et al.  CALPHAD and Phase-Field Modeling: A Successful Liaison , 2007 .

[73]  K R Elder,et al.  Sharp interface limits of phase-field models. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  I. Steinbach,et al.  The multiphase-field model with an integrated concept for modelling solute diffusion , 1998 .

[75]  László Gránásy,et al.  Cahn–Hilliard theory with triple-parabolic free energy. I. Nucleation and growth of a stable crystalline phase , 2000 .

[76]  M. Plapp,et al.  Three-dimensional phase-field simulations of eutectic solidification and comparison to in situ experimental observations , 2006 .

[77]  B. Nestler,et al.  Large-scale phase-field simulations of ternary eutectic microstructure evolution , 2016 .

[78]  A. Choudhury Pattern-Formation During Self-organization in Three-Phase Eutectic Solidification , 2015, Transactions of the Indian Institute of Metals.

[79]  D. G. McCartney,et al.  The structures expected in a simple ternary eutectic system: Part 1. Theory , 1980 .

[80]  Y. Shibuta,et al.  Two-dimensional phase-field study of competitive grain growth during directional solidification of polycrystalline binary alloy , 2016 .

[81]  J. Rutter,et al.  Formation of microstructure in the Cd-In-Sn ternary eutectic , 1998 .

[82]  J. Eiken,et al.  Multi-ternary extrapolation scheme for efficient coupling of thermodynamic data to a multi-phase-field model , 2015 .

[83]  M. Ohno,et al.  Controlling Microstructure in Magnesium Alloys: A Combined Thermodynamic, Experimental and Simulation Approach , 2006 .

[84]  D. Browne,et al.  A generalised version of an Ivantsov-based dendrite growth model incorporating a facility for solute measurement ahead of the tip , 2012 .

[85]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[86]  P. Sahm,et al.  Primary spacing in directional solidification , 1998 .

[87]  R. Sekerka,et al.  Phase field modeling of shallow cells during directional solidification of a binary alloy , 2002 .

[88]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[89]  H. Emmerich,et al.  Phase-field modelling for metals and colloids and nucleation therein—an overview , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[90]  A. Karma,et al.  Overstability of lamellar eutectic growth below the minimum-undercooling spacing , 2004 .

[91]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[92]  N. Maraşlı,et al.  Dependency of eutectic spacings and microhardness on the temperature gradient for directionally solidified Sn–Ag–Cu lead-free solder , 2010 .

[93]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[94]  Britta Nestler,et al.  Grand-potential formulation for multicomponent phase transformations combined with thin-interface asymptotics of the double-obstacle potential. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  J. Rutter,et al.  Formation of microstructure during solidification of Bi–Pb–Sn ternary eutectic , 1999 .

[96]  William L. George,et al.  A Parallel 3D Dendritic Growth Simulator Using the Phase-Field Method , 2002 .

[97]  M. Plapp,et al.  Stability of lamellar eutectic growth , 2008 .

[98]  B. Nestler,et al.  Growth morphologies in peritectic solidification of Fe–C: A phase-field study , 2010 .

[99]  D. Herlach Phase transformations in multicomponent melts , 2008 .

[100]  S. Akamatsu,et al.  Dynamic instabilities of rod-like eutectic growth patterns: A real-time study , 2013 .

[101]  A. Karma,et al.  Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .

[102]  N. Maraşlı,et al.  Determination of solid–liquid interfacial energy for a solid Sn in equilibrium with a Sn–Ag–Zn eutectic liquid , 2011 .

[103]  Lorenz Ratke,et al.  Microstructures of Directionally Solidified Al–Ag–Cu Ternary Eutectics , 2012, Transactions of the Indian Institute of Metals.

[104]  Ulrich Rüde,et al.  Large scale phase-field simulations of directional ternary eutectic solidification , 2015 .

[105]  G. Caginalp,et al.  Phase-field and sharp-interface alloy models. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[106]  Tomohiro Takaki,et al.  GPU phase-field lattice Boltzmann simulations of growth and motion of a binary alloy dendrite , 2015 .

[107]  Supriyo Ghosh,et al.  Interphase anisotropy effects on lamellar eutectics: a numerical study. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[108]  Peter K. Jimack,et al.  An adaptive, fully implicit multigrid phase-field model for the quantitative simulation of non-isothermal binary alloy solidification , 2008 .

[109]  Ralf Kornhuber,et al.  On multigrid methods for vector-valued Allen-Cahn equations , 2003 .

[110]  Stephen H. Davis,et al.  Theory of Solidification , 2001 .

[111]  J. Hunt,et al.  Lamellar and Rod Eutectic Growth , 1988 .

[112]  A. Karma Phase-field formulation for quantitative modeling of alloy solidification. , 2001, Physical review letters.

[113]  Jonathan A. Dantzig,et al.  MULTISCALE MODELING OF SOLIDIFICATION: PHASE-FIELD METHODS TO ADAPTIVE MESH REFINEMENT , 2005 .

[114]  J. Rutter,et al.  Microstructure of Bi–Cd–Sn ternary eutectic , 1996 .

[115]  Yibao Li,et al.  Phase-field simulations of crystal growth with adaptive mesh refinement , 2012 .

[116]  James S. Langer,et al.  Theory of spinodal decomposition in alloys , 1971 .

[117]  Roberto Rojas,et al.  A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection , 2015, J. Comput. Phys..

[118]  Wang,et al.  Computation of the dendritic operating state at large supercoolings by the phase field model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[119]  I. Steinbach,et al.  Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[120]  Britta Nestler,et al.  A multigrid solver for phase field simulation of microstructure evolution , 2008, Math. Comput. Simul..

[121]  László Gránásy,et al.  Ternary eutectic dendrites: Pattern formation and scaling properties. , 2015, The Journal of chemical physics.

[122]  Won Tae Kim,et al.  Phase-field modeling of eutectic solidification , 2004 .

[123]  H. Fredriksson,et al.  Solidification and Crystallization Processing in Metals and Alloys , 2012 .

[124]  John W. Cahn,et al.  Dendritic and spheroidal growth , 1961 .

[125]  I. Steinbach,et al.  2D and 3D phase-field simulations of lamella and fibrous eutectic growth , 2002 .

[126]  J. Warren,et al.  Modelling polycrystalline solidification using phase field theory , 2004 .

[127]  V. Witusiewicz,et al.  Coupled growth of Al-Al2Cu eutectics in Al-Cu-Ag alloys , 2012 .

[128]  E. Jakeman,et al.  On the theory of the stability of lamellar eutectics , 1970, Metallurgical and Materials Transactions B.

[129]  A. A. Wheeler,et al.  Thermodynamically-consistent phase-field models for solidification , 1992 .

[130]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[131]  Emin Çadırlı,et al.  Determination of mechanical, electrical and thermal properties of the Sn―Bi―Zn ternary alloy , 2011 .

[132]  Supriyo Ghosh Effects of solid-solid boundary anisotropy on directional solidification microstructures , 2015 .

[133]  G Faivre,et al.  Pattern stability and trijunction motion in eutectic solidification. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[134]  Ralf Kornhuber,et al.  Time discretizations of anisotropic Allen–Cahn equations , 2013 .

[135]  B. Nestler,et al.  Microstructures in a ternary eutectic alloy: devising metrics based on neighbourhood relationships , 2016 .

[136]  Harald Garcke,et al.  On anisotropic order parameter models for multi-phase system and their sharp interface limits , 1998 .

[137]  Herbert Levine,et al.  Pattern selection in fingered growth phenomena , 1988 .

[138]  New Metallographic Method for Estimation of Ordering and Lattice Parameter in Ternary Eutectic Systems , 2013, Metallography, Microstructure, and Analysis.

[139]  H. W. Kerr,et al.  Unidirectional solidification of monovariant CuNiMg eutectic alloys II. Microstructures and properties , 1973 .

[140]  T. Takaki,et al.  Unexpected selection of growing dendrites by very-large-scale phase-field simulation , 2013 .

[141]  I. Steinbach,et al.  A phase field concept for multiphase systems , 1996 .

[142]  M Plapp,et al.  Eutectic colony formation: a stability analysis. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[143]  T. Himemiya Growth models of two-phase eutectic cell in a ternary eutectic system : a phase selection map , 1999 .

[144]  G. Caginalp,et al.  Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. , 1989, Physical review. A, General physics.

[145]  Fife,et al.  Phase-field methods for interfacial boundaries. , 1986, Physical review. B, Condensed matter.

[146]  I. Steinbach,et al.  History effects during the selection of primary dendrite spacing. Comparison of phase-field simulations with experimental observations , 2002 .

[147]  Grant,et al.  Directional solidification in two and three dimensions. , 1993, Physical review letters.

[148]  P. Voorhees,et al.  Stability of a planar interface during solidification of a multicomponent system , 1987 .

[149]  M. Plapp,et al.  Three-dimensional phase-field simulations of directional solidification , 2007 .

[150]  Katsuyo Thornton,et al.  Modelling the evolution of phase boundaries in solids at the meso- and nano-scales , 2003 .

[151]  James A. Warren,et al.  Simulation of the cell to plane front transition during directional solidification at high velocity , 1999 .

[152]  A. Karma,et al.  New insights into the morphological stability of eutectic and peritectic coupled growth , 2004 .

[153]  Britta Nestler,et al.  Phase-field modeling of multi-phase solidification , 2002 .

[154]  Peter K. Jimack,et al.  On the fully implicit solution of a phase-field model for binary alloy solidification in three dimensions , 2012 .

[155]  M. Plapp,et al.  Defects and multistability in eutectic solidification patterns , 2010, 1005.5566.

[156]  Robert Almgren,et al.  Second-Order Phase Field Asymptotics for Unequal Conductivities , 1999, SIAM J. Appl. Math..

[157]  Robert F. Sekerka,et al.  Phase-field model of solidification of a binary alloy , 1998 .

[158]  E. Brener,et al.  Scaling theory of two-phase dendritic growth in undercooled ternary melts. , 2014, Physical review letters.

[159]  T. Pusztai,et al.  Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation , 2008, 0806.2234.

[160]  A. Carré,et al.  Implementation of an antitrapping current for a multicomponent multiphase-field ansatz , 2013 .

[161]  S. Kim A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties , 2007 .

[162]  Faivre,et al.  Traveling waves, two-phase fingers, and eutectic colonies in thin-sample directional solidification of a ternary eutectic alloy , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[163]  Grant,et al.  Stochastic eutectic growth. , 1994, Physical review letters.

[164]  Surya R. Kalidindi,et al.  Hierarchical Materials Informatics: Novel Analytics for Materials Data , 2015 .

[165]  L. Froyen,et al.  Two-phase planar and regular lamellar coupled growth along the univariant eutectic reaction in ternary alloys: An analytical approach and application to the Al-Cu-Ag system , 2005 .

[166]  Karma,et al.  Numerical Simulation of Three-Dimensional Dendritic Growth. , 1996, Physical review letters.

[167]  W. Boettinger,et al.  Prediction of solute trapping at high solidification rates using a diffuse interface phase-field theory of alloy solidification , 1994 .

[168]  R. Trivedi,et al.  Solidification microstructures: recent developments, future directions , 2000 .

[169]  T. Takaki Phase-field Modeling and Simulations of Dendrite Growth , 2014 .

[170]  S. Moulinet,et al.  The formation of lamellar-eutectic grains in thin samples , 2001 .

[171]  R. Sekerka,et al.  Stability of a Planar Interface During Solidification of a Dilute Binary Alloy , 1964 .

[172]  Paul C. Fife,et al.  Thermodynamically consistent models of phase-field type for the kinetics of phase transitions , 1990 .

[173]  Supriyo Ghosh,et al.  Lamellar eutectic growth with anisotropic interphase boundaries , 2015 .

[174]  B. Nestler,et al.  Effect of solutal Marangoni convection on motion, coarsening, and coalescence of droplets in a monotectic system. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[175]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[176]  S. Akamatsu,et al.  Experimental evidence for a zigzag bifurcation in bulk lamellar eutectic growth. , 2004, Physical review letters.

[177]  Ingo Steinbach,et al.  Phase Field Simulation of Equiaxed Solidification in Technical Alloys , 2006 .

[178]  S. Akamatsu,et al.  Experimental determination of the stability diagram of a lamellar eutectic growth front , 1997 .

[179]  John W. Cahn,et al.  On the nature of the interface between a solid metal and its melt , 1958 .

[180]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[181]  C. T. Ríos,et al.  Influence of the growth rate on the microstructure of a Nb-Al-Ni ternary eutectic , 2002 .

[182]  Phase Field Analysis of Eutectic Breakdown , 2007 .

[183]  P. Grant,et al.  Phase field simulation of multi-dendrite growth in a coupled thermal-solute-convective environment , 2012 .

[184]  B. Nestler,et al.  Phase-field modeling of multi-component systems , 2011 .

[185]  W. Kurz,et al.  Fundamentals of Solidification , 1990 .

[186]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[187]  S. Raj,et al.  Microstructural characterization of a directionally-solidified Ni–33 (at.%) Al–31Cr–3Mo eutectic alloy as a function of withdrawal rate , 2001 .

[188]  Britta Nestler,et al.  Phase-field simulations of solidification in binary and ternary systems using a finite element method , 2005 .

[189]  I. Sargin Invariant and univariant eutectic solidification in ternary alloys , 2015 .

[190]  Peter K. Jimack,et al.  A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification , 2007, J. Comput. Phys..

[191]  Irina Singer-Loginova,et al.  The phase field technique for modeling multiphase materials , 2008 .

[192]  Long-time scale morphological dynamics near the onset of instability during directional solidification of an alloy , 2004 .

[193]  D. Kinderlehrer,et al.  Morphological Stability of a Particle Growing by Diffusion or Heat Flow , 1963 .

[194]  J. Rutter,et al.  Origin of microstructure in the 332 K eutectic of the Bi-In-Sn system , 1997 .

[195]  Tam'as Pusztai,et al.  Spiraling eutectic dendrites , 2013, 1302.4884.

[196]  A. Karma,et al.  Morphological instabilities of lamellar eutectics , 1996 .

[197]  R. Sekerka Role of instabilities in determination of the shapes of growing crystals , 1993 .

[198]  C. Zener Theory of Growth of Spherical Precipitates from Solid Solution , 1949 .

[199]  C. Shih,et al.  Phase field modeling of convective and morphological instability during directional solidification of an alloy , 2006 .

[200]  J. Warren,et al.  A general mechanism of polycrystalline growth , 2004, Nature materials.

[201]  J. D. Holder,et al.  The directional solidification of Pb-Sn-Cd alloys , 1974, Metallurgical and Materials Transactions B.

[202]  Pil-Ryung Cha,et al.  A phase field model for isothermal solidification of multicomponent alloys , 2001 .

[203]  Marco Berghoff,et al.  Efficient techniques for bridging from atomic to mesoscopic scale in phase-field simulations , 2013, J. Comput. Methods Sci. Eng..

[204]  Robert F. Sekerka,et al.  Morphology: from sharp interface to phase field models , 2004 .

[205]  N. Provatas,et al.  Phase-field simulations of velocity selection in rapidly solidified binary alloys. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[206]  H. Emmerich,et al.  Phase-field modeling of the microstructure evolution and heterogeneous nucleation in solidifying ternary Al–Cu–Ni alloys , 2015 .

[207]  B. Nestler,et al.  Theoretical and numerical study of lamellar eutectic three-phase growth in ternary alloys. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[208]  Bruce T. Murray,et al.  Computation of Dendrites Using a Phase Field Model , 2017 .

[209]  László Gránásy,et al.  Phase field theory of crystal nucleation and polycrystalline growth: A review , 2006 .

[210]  A. Bührig-Polaczek,et al.  A Phase-field Model for Technical Alloy Solidification , 2010 .

[211]  Harald Garcke,et al.  Modelling of microstructure formation and interface dynamics , 2003 .

[212]  E. Çadırlı,et al.  Effect of solidification parameters on the microstructure of directionally solidified Sn-Bi-Zn lead-free solder , 2012, Metals and Materials International.

[213]  Massimo Conti,et al.  Interface dynamics and solute trapping in alloy solidification with density change. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[214]  Fife,et al.  Higher-order phase field models and detailed anisotropy. , 1986, Physical review. B, Condensed matter.

[215]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[216]  R. M. Sharp,et al.  Growth of ternary composites from the melt: Part II , 1972 .

[217]  Britta Nestler,et al.  Phase-field model for solidification of a monotectic alloy with convection , 2000 .

[218]  B. Nestler,et al.  A phase-field study of large-scale dendrite fragmentation in Al-Cu , 2012 .

[219]  T. Takaki,et al.  GPU-accelerated phase-field simulation of dendritic solidification in a binary alloy , 2011 .

[220]  E. Wallach,et al.  A phase-field model coupled with a thermodynamic database , 2003 .

[221]  I. Steinbach Phase-field models in materials science , 2009 .

[222]  Robert W. Balluffi,et al.  Kinetics Of Materials , 2005 .

[223]  J. Warren,et al.  Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method , 1995 .

[224]  S. Akamatsu,et al.  A theory of thin lamellar eutectic growth with anisotropic interphase boundaries , 2012 .

[225]  H. Bhadeshia,et al.  Phase field method , 2010 .

[226]  Gustav Amberg,et al.  Semisharp phase field method for quantitative phase change simulations. , 2003, Physical review letters.

[227]  Britta Nestler,et al.  A multi-phase-field model of eutectic and peritectic alloys: numerical simulation of growth structures , 2000 .

[228]  T. Ihle,et al.  Similarity law for the tilt angle of dendrites in directional solidification of non-axially-oriented crystals , 1997 .

[229]  B. Stinner,et al.  Multicomponent alloy solidification: phase-field modeling and simulations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[230]  B. Nestler,et al.  Spinodal decomposition and droplets entrapment in monotectic solidification. , 2012, The Journal of chemical physics.

[231]  U. Böyük Physical and mechanical properties of Al-Si-Ni eutectic alloy , 2012, Metals and Materials International.

[232]  Ralf Kornhuber,et al.  On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints , 2007 .

[233]  P. Voorhees,et al.  A model for eutectic growth in multicomponent alloys , 2015 .

[234]  A. Karma,et al.  Quantitative phase-field model of alloy solidification. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[235]  L. Ratke,et al.  Crystal orientation and morphology in Al-Ag-Cu ternary eutectic , 2012 .

[236]  L. Froyen,et al.  Coupled two-phase [α(Al) + θ(Al2Cu)] planar growth and destabilisation along the univariant eutectic reaction in Al–Cu–Ag alloys , 2004 .

[237]  Department of Physics,et al.  Universal dynamics of phase-field models for dendritic growth , 1999 .

[238]  R. Siquieri,et al.  Phase-field investigation of the nucleation kinetics and of the influence of convection on growth in peritectic systems , 2007 .

[239]  Ulrich Rüde,et al.  Phase-field simulations of spiral growth during directional ternary eutectic solidification , 2016 .

[240]  R. Folch,et al.  Towards a quantitative phase-field model of two-phase solidification. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[241]  M. Plapp,et al.  Role of transverse temperature gradients in the generation of lamellar eutectic solidification patterns , 2010 .

[242]  Akinori Yamanaka,et al.  Multiple-GPU Scalability of Phase-Field Simulation for Dendritic Solidification (Selected Papers of the Joint International Conference of Supercomputing in Nuclear Applications and Monte Carlo : SNA + MC 2010) , 2011 .

[243]  J. Rutter,et al.  Origin of microstructure in 350 K eutectic of Bi–In–Sn ternary system , 1995 .

[244]  N. Maraşlı,et al.  Microstructural characterization of unidirectional solidified eutectic Al–Si–Ni alloy , 2011 .

[245]  J. Tiaden,et al.  COUPLING OF MULTICOMPONENT THERMODYNAMIC DATABASES TO A PHASE FIELD MODEL: APPLICATION TO SOLIDIFICATION AND SOLID STATE TRANSFORMATIONS OF SUPERALLOYS , 2000 .

[246]  Amber Genau,et al.  Morphological characterization of the Al–Ag–Cu ternary eutectic , 2012 .