Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery

[1]  Damien Sulla-Menashe,et al.  A global land-cover validation data set, part I: fundamental design principles , 2012 .

[2]  Limin Yang,et al.  An analysis of the IGBP global land-cover characterization process , 1999 .

[3]  Konstantinos Topouzelis,et al.  Oil spill feature selection and classification using decision tree forest on SAR image data , 2012 .

[4]  Carsten Brockmann,et al.  Automated Training Sample Extraction for Global Land Cover Mapping , 2014, Remote. Sens..

[5]  R. Fernandes,et al.  Approaches to fractional land cover and continuous field mapping: A comparative assessment over the BOREAS study region , 2004 .

[6]  Rasim Latifovic,et al.  Circa 2010 Land Cover of Canada: Local Optimization Methodology and Product Development , 2017, Remote. Sens..

[7]  Stefan Dech,et al.  A semi-automated approach for the generation of a new land use and land cover product for Germany based on Landsat time-series and Lucas in-situ data , 2017 .

[8]  Olivier Hagolle,et al.  Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure , 2019, Remote. Sens..

[9]  Dirk Pflugmacher,et al.  Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey , 2019, Remote Sensing of Environment.

[10]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[11]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[12]  Johannes R. Sveinsson,et al.  Random Forests for land cover classification , 2006, Pattern Recognit. Lett..

[13]  Hankui K. Zhang,et al.  Meta-discoveries from a synthesis of satellite-based land-cover mapping research , 2014 .

[14]  A. Cazenave,et al.  The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables , 2013 .

[15]  Mario Chica-Olmo,et al.  An assessment of the effectiveness of a random forest classifier for land-cover classification , 2012 .

[16]  Sinasi Kaya,et al.  Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery , 2019, Remote. Sens..

[17]  Justin Morgenroth,et al.  Developments in Landsat Land Cover Classification Methods: A Review , 2017, Remote. Sens..

[18]  Giles M. Foody,et al.  Land cover classification using multi‐temporal MERIS vegetation indices , 2007 .

[19]  R. Polikar,et al.  Ensemble based systems in decision making , 2006, IEEE Circuits and Systems Magazine.

[20]  Chengquan Huang,et al.  Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges , 2012, Int. J. Digit. Earth.

[21]  Alemayehu Midekisa,et al.  Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing , 2017, PloS one.

[22]  J. Fry,et al.  Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods , 2009 .

[23]  Jin Chen,et al.  Global land cover mapping at 30 m resolution: A POK-based operational approach , 2015 .

[24]  Zhe Zhu,et al.  Overall Methodology Design for the United States National Land Cover Database 2016 Products , 2019, Remote. Sens..

[25]  Limin Yang,et al.  COMPLETION OF THE 1990S NATIONAL LAND COVER DATA SET FOR THE CONTERMINOUS UNITED STATES FROM LANDSAT THEMATIC MAPPER DATA AND ANCILLARY DATA SOURCES , 2001 .

[26]  Xiao Xiang Zhu,et al.  Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine , 2020, Remote. Sens..

[27]  Peijun Du,et al.  Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features , 2015 .

[28]  Peng Gong,et al.  Global land cover mapping using Earth observation satellite data: Recent progresses and challenges , 2015 .

[29]  Joanne C. White,et al.  Land cover 2.0 , 2018 .

[30]  Limin Yang,et al.  A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[31]  Giles M. Foody,et al.  An evaluation of some factors affecting the accuracy of classification by an artificial neural network , 1997 .

[32]  Russell G. Congalton,et al.  Global Land Cover Mapping: A Review and Uncertainty Analysis , 2014, Remote. Sens..

[33]  Joanne C. White,et al.  Optical remotely sensed time series data for land cover classification: A review , 2016 .

[34]  Martin Herold,et al.  Some challenges in global land cover mapping : An assessment of agreement and accuracy in existing 1 km datasets , 2008 .

[35]  A. Simmons,et al.  The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy , 2014 .

[36]  A. Belward,et al.  GLC2000: a new approach to global land cover mapping from Earth observation data , 2005 .

[37]  Andreas Kääb,et al.  Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies , 2007 .

[38]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[39]  Hankui K. Zhang,et al.  Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data , 2013 .

[40]  Bin Chen,et al.  Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. , 2019, Science bulletin.

[41]  Chengquan Huang,et al.  Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error , 2013, Int. J. Digit. Earth.

[42]  J. Townshend,et al.  NDVI-derived land cover classifications at a global scale , 1994 .

[43]  Le Yu,et al.  Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: a segmentation-based approach , 2013 .

[44]  Ashbindu Singh,et al.  Status and distribution of mangrove forests of the world using earth observation satellite data , 2011 .

[45]  D. Shangguan,et al.  Regional differences in global glacier retreat from 1980 to 2015 , 2019 .

[46]  René R. Colditz,et al.  Land cover classification with coarse spatial resolution data to derive continuous and discrete maps for complex regions , 2011 .

[47]  Le Yu,et al.  FROM-GC: 30 m global cropland extent derived through multisource data integration , 2013, Int. J. Digit. Earth.

[48]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[49]  Jérôme M. B. Louis,et al.  Copernicus Sentinel-2A Calibration and Products Validation Status , 2017, Remote. Sens..

[50]  Y. Murayama,et al.  Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices , 2015 .

[51]  Peijun Du,et al.  A review of supervised object-based land-cover image classification , 2017 .

[52]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[53]  David Morin,et al.  Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series , 2017, Remote. Sens..

[54]  Chandra P. Giri,et al.  Next generation of global land cover characterization, mapping, and monitoring , 2013, Int. J. Appl. Earth Obs. Geoinformation.