Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook

1. Introduction.- 1.1 Background.- 1.1.1 Inferring Models and Controllers from Data.- 1.1.2 Why Use Neural Networks?.- 1.2 Introduction to Multilayer Perceptron Networks.- 1.2.1 The Neuron.- 1.2.2 The Multilayer Perceptron.- 1.2.3 Choice of Neural Network Architecture.- 1.2.4 Models of Dynamic Systems.- 1.2.5 Recurrent Networks.- 1.2.6 Other Neural Network Architectures.- 2. System Identification with Neural Networks.- 2.1 Introduction to System Identification.- 2.1.1 The Procedure.- 2.2 Model Structure Selection.- 2.2.1 Some Linear Model Structures.- 2.2.2 Nonlinear Model Structures Based on Neural Networks.- 2.2.3 A Few Remarks on Stability.- 2.2.4 Terminology.- 2.2.5 Selecting the Lag Space.- 2.2.6 Section Summary.- 2.3 Experiment.- 2.3.1 When is a Linear Model Insufficient?.- 2.3.2 Issues in Experiment Design.- 2.3.3 Preparing the Data for Modelling.- 2.3.4 Section Summary.- 2.4 Determination of the Weights.- 2.4.1 The Prediction Error Method.- 2.4.2 Regularization and the Concept of Generalization.- 2.4.3 Remarks on Implementation.- 2.4.4 Section Summary.- 2.5 Validation.- 2.5.1 Looking for Correlations.- 2.5.2 Estimation of the Average Generalization Error.- 2.5.3 Visualization of the Predictions.- 2.5.4 Section Summary.- 2.6 Going Backwards in the Procedure.- 2.6.1 Training the Network Again.- 2.6.2 Finding the Optimal Network Architecture.- 2.6.3 Redoing the Experiment.- 2.6.4 Section Summary.- 2.7 Recapitulation of System Identification.- 3. Control with Neural Networks.- 3.1 Introduction to Neural-Network-based Control.- 3.1.1 The Benchmark System.- 3.2 Direct Inverse Control.- 3.2.1 General Training.- 3.2.2 Direct Inverse Control of the Benchmark System.- 3.2.3 Specialized Training.- 3.2.4 Specialized Training and Direct Inverse Control of the Benchmark System.- 3.2.5 Section Summary.- 3.3 Internal Model Control (IMC).- 3.3.1 Internal Model Control with Neural Networks.- 3.3.2 Section Summary.- 3.4 Feedback Linearization.- 3.4.1 The Basic Principle of Feedback Linearization.- 3.4.2 Feedback Linearization Using Neural Network Models..- 3.4.3 Feedback Linearization of the Benchmark System.- 3.4.4 Section Summary.- 3.5 Feedforward Control.- 3.5.1 Feedforward for Optimizing an Existing Control System.- 3.5.2 Feedforward Control of the Benchmark System.- 3.5.3 Section Summary.- 3.6 Optimal Control.- 3.6.1 Training of an Optimal Controller.- 3.6.2 Optimal Control of the Benchmark System.- 3.6.3 Section Summary.- 3.7 Controllers Based on Instantaneous Linearization.- 3.7.1 Instantaneous Linearization.- 3.7.2 Applying Instantaneous Linearization to Control.- 3.7.3 Approximate Pole Placement Design.- 3.7.4 Pole Placement Control of the Benchmark System.- 3.7.5 Approximate Minimum Variance Design.- 3.7.6 Section Summary.- 3.8 Predictive Control.- 3.8.1 Nonlinear Predictive Control (NPC).- 3.8.2 NPC Applied to the Benchmark System.- 3.8.3 Approximate Predictive Control (APC).- 3.8.4 APC applied to the Benchmark System.- 3.8.5 Extensions to the Predictive Controller.- 3.8.6 Section Summary.- 3.9 Recapitulation of Control Design Methods.- 4. Case Studies.- 4.1 The Sunspot Benchmark.- 4.1.1 Modelling with a Fully Connected Network.- 4.1.2 Pruning of the Network Architecture.- 4.1.3 Section Summary.- 4.2 Modelling of a Hydraulic Actuator.- 4.2.1 Estimation of a Linear Model.- 4.2.2 Neural Network Modelling of the Actuator.- 4.2.3 Section Summary.- 4.3 Pneumatic Servomechanism.- 4.3.1 Identification of the Pneumatic Servomechanism.- 4.3.2 Nonlinear Predictive Control of the Servo.- 4.3.3 Approximate Predictive Control of the Servo.- 4.3.4 Section Summary.- 4.4 Control of Water Level in a Conic Tank.- 4.4.1 Linear Analysis and Control.- 4.4.2 Direct Inverse Control of the Water Level.- 4.4.3 Section Summary.- References.