The Interaction Between Logic and Geometry in Aristotelian Diagrams
暂无分享,去创建一个
[1] F. Cavaliere. Fuzzy Syllogisms, Numerical Square, Triangle of Contraries, Inter-bivalence , 2012 .
[2] Corin A. Gurr,et al. Effective Diagrammatic Communication: Syntactic, Semantic and Pragmatic Issues , 1999, J. Vis. Lang. Comput..
[3] D. Jacquette. Thinking Outside the Square of Opposition Box , 2012 .
[4] Jan C. Joerden. Logik im Recht , 2010 .
[5] Gem Stapleton,et al. Does the Orientation of an Euler Diagram Affect User Comprehension? , 2012, DMS.
[6] Laurence R. Horn. A Natural History of Negation , 1989 .
[7] Lorenz Demey. Algebraic Aspects of Duality Diagrams , 2012, Diagrams.
[8] Hans Smessaert,et al. On the 3D Visualisation of Logical Relations , 2009, Logica Universalis.
[9] Hans Smessaert,et al. The Relationship between Aristotelian and Hasse Diagrams , 2014, Diagrams.
[10] Hans Smessaert,et al. Metalogical Decorations of Logical Diagrams , 2016, Logica Universalis.
[11] L. Demey,et al. The Unreasonable Effectiveness of Bitstrings in Logical Geometry , 2017 .
[12] Lorenz Demey,et al. Interactively Illustrating the Context-Sensitivity of Aristotelian Diagrams , 2015, CONTEXT.
[13] Alessio Moretti,et al. The Geometry of Standard Deontic Logic , 2009, Logica Universalis.
[14] Peter Rodgers,et al. Evaluating the Comprehension of Euler Diagrams , 2007, 2007 11th International Conference Information Visualization (IV '07).
[15] Mark A. Brown. Generalized quantifiers and the square of opposition , 1984, Notre Dame J. Formal Log..
[16] Didier Dubois,et al. From Blanché’s Hexagonal Organization of Concepts to Formal Concept Analysis and Possibility Theory , 2012, Logica Universalis.
[17] Ka-fat Chow. General Patterns of Opposition Squares and 2n-gons , 2012 .
[18] Hans Smessaert,et al. Boolean Differences between Two Hexagonal Extensions of the Logical Square of Oppositions , 2012, Diagrams.
[19] Peter Rodgers,et al. A survey of Euler diagrams , 2014, J. Vis. Lang. Comput..
[20] Hans Smessaert,et al. Visualising the Boolean Algebra 𝔹4 in 3D , 2016, Diagrams.
[21] Barbara Tversky,et al. Visualizing Thought , 2011, Top. Cogn. Sci..
[22] Hans Smessaert,et al. Logical and Geometrical Complementarities between Aristotelian Diagrams , 2014, Diagrams.
[23] Pieter A. M. Seuren,et al. Logico-cognitive structure in the lexicon , 2014 .
[24] Hans Smessaert,et al. Logical Geometries and Information in the Square of Oppositions , 2014, Journal of Logic, Language and Information.
[25] Herbert A. Simon,et al. Why a Diagram is (Sometimes) Worth Ten Thousand Words , 1987 .
[26] L. Demey. Structures of Oppositions in Public Announcement Logic , 2012 .
[27] Barbara Tversky,et al. Prolegomenon to Scientific Visualizations , 2005 .
[28] Gem Stapleton,et al. The Impact of Shape on the Perception of Euler Diagrams , 2014, Diagrams.
[29] Hans Smessaert,et al. Combinatorial Bitstring Semantics for Arbitrary Logical Fragments , 2017, Journal of Philosophical Logic.
[30] M. Correia. Boethius on the Square of Opposition , 2012 .
[31] Hans Smessaert,et al. Shape Heuristics in Aristotelian Diagrams , 2015, SHAPES.
[32] Fabien Schang,et al. The Cube, the Square and the Problem of Existential Import , 2013 .