The Interaction Between Logic and Geometry in Aristotelian Diagrams

We develop a systematic approach for dealing with informationally equivalent Aristotelian diagrams, based on the interaction between the logical properties of the visualized information and the geometrical properties of the concrete polygon/polyhedron. To illustrate the account’s fruitfulness, we apply it to all Aristotelian families of 4-formula fragments that are closed under negation (comparing square and rectangle) and to all Aristotelian families of 6-formula fragments that are closed under negation (comparing hexagon and octahedron).

[1]  F. Cavaliere Fuzzy Syllogisms, Numerical Square, Triangle of Contraries, Inter-bivalence , 2012 .

[2]  Corin A. Gurr,et al.  Effective Diagrammatic Communication: Syntactic, Semantic and Pragmatic Issues , 1999, J. Vis. Lang. Comput..

[3]  D. Jacquette Thinking Outside the Square of Opposition Box , 2012 .

[4]  Jan C. Joerden Logik im Recht , 2010 .

[5]  Gem Stapleton,et al.  Does the Orientation of an Euler Diagram Affect User Comprehension? , 2012, DMS.

[6]  Laurence R. Horn A Natural History of Negation , 1989 .

[7]  Lorenz Demey Algebraic Aspects of Duality Diagrams , 2012, Diagrams.

[8]  Hans Smessaert,et al.  On the 3D Visualisation of Logical Relations , 2009, Logica Universalis.

[9]  Hans Smessaert,et al.  The Relationship between Aristotelian and Hasse Diagrams , 2014, Diagrams.

[10]  Hans Smessaert,et al.  Metalogical Decorations of Logical Diagrams , 2016, Logica Universalis.

[11]  L. Demey,et al.  The Unreasonable Effectiveness of Bitstrings in Logical Geometry , 2017 .

[12]  Lorenz Demey,et al.  Interactively Illustrating the Context-Sensitivity of Aristotelian Diagrams , 2015, CONTEXT.

[13]  Alessio Moretti,et al.  The Geometry of Standard Deontic Logic , 2009, Logica Universalis.

[14]  Peter Rodgers,et al.  Evaluating the Comprehension of Euler Diagrams , 2007, 2007 11th International Conference Information Visualization (IV '07).

[15]  Mark A. Brown Generalized quantifiers and the square of opposition , 1984, Notre Dame J. Formal Log..

[16]  Didier Dubois,et al.  From Blanché’s Hexagonal Organization of Concepts to Formal Concept Analysis and Possibility Theory , 2012, Logica Universalis.

[17]  Ka-fat Chow General Patterns of Opposition Squares and 2n-gons , 2012 .

[18]  Hans Smessaert,et al.  Boolean Differences between Two Hexagonal Extensions of the Logical Square of Oppositions , 2012, Diagrams.

[19]  Peter Rodgers,et al.  A survey of Euler diagrams , 2014, J. Vis. Lang. Comput..

[20]  Hans Smessaert,et al.  Visualising the Boolean Algebra 𝔹4 in 3D , 2016, Diagrams.

[21]  Barbara Tversky,et al.  Visualizing Thought , 2011, Top. Cogn. Sci..

[22]  Hans Smessaert,et al.  Logical and Geometrical Complementarities between Aristotelian Diagrams , 2014, Diagrams.

[23]  Pieter A. M. Seuren,et al.  Logico-cognitive structure in the lexicon , 2014 .

[24]  Hans Smessaert,et al.  Logical Geometries and Information in the Square of Oppositions , 2014, Journal of Logic, Language and Information.

[25]  Herbert A. Simon,et al.  Why a Diagram is (Sometimes) Worth Ten Thousand Words , 1987 .

[26]  L. Demey Structures of Oppositions in Public Announcement Logic , 2012 .

[27]  Barbara Tversky,et al.  Prolegomenon to Scientific Visualizations , 2005 .

[28]  Gem Stapleton,et al.  The Impact of Shape on the Perception of Euler Diagrams , 2014, Diagrams.

[29]  Hans Smessaert,et al.  Combinatorial Bitstring Semantics for Arbitrary Logical Fragments , 2017, Journal of Philosophical Logic.

[30]  M. Correia Boethius on the Square of Opposition , 2012 .

[31]  Hans Smessaert,et al.  Shape Heuristics in Aristotelian Diagrams , 2015, SHAPES.

[32]  Fabien Schang,et al.  The Cube, the Square and the Problem of Existential Import , 2013 .