Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy

[1]  J. C. H. Spence,et al.  Electron Microdiffraction , 2020, Springer US.

[2]  Linze Li,et al.  Discovery of a magnetic conductive interface in PbZr0.2Ti0.8O3 /SrTiO3 heterostructures , 2018, Nature Communications.

[3]  E. Tsymbal,et al.  Direct observation of a two-dimensional hole gas at oxide interfaces , 2018, Nature Materials.

[4]  Xinyuan Wei,et al.  Imaging the halogen bond in self-assembled halogenbenzenes on silver , 2017, Science.

[5]  Z. Zhong,et al.  Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-Layer-Induced Octahedral Distortion. , 2017, Physical review letters.

[6]  Clare C. Yu,et al.  Hydrogen as a source of flux noise in SQUIDs , 2017, Physical Review B.

[7]  Naoya Shibata,et al.  Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy. , 2017, Accounts of chemical research.

[8]  Josef Zweck,et al.  Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy. , 2017, Ultramicroscopy.

[9]  Dragan Damjanovic,et al.  Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. , 2017, Nature materials.

[10]  S. Pi,et al.  Possibility of Realizing Quantum Spin Hall Effect at Room Temperature in Stanene/Al2O3(0001) , 2016, 1701.07526.

[11]  E. Altman,et al.  Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research. , 2015, Accounts of chemical research.

[12]  Clare C. Yu,et al.  Candidate Source of Flux Noise in SQUIDs: Adsorbed Oxygen Molecules. , 2015, Physical review letters.

[13]  R. Colby,et al.  Spatial control of functional properties via octahedral modulations in complex oxide superlattices , 2014, Nature Communications.

[14]  Josef Zweck,et al.  Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction , 2014, Nature Communications.

[15]  Sergei V. Kalinin,et al.  Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/LaxSr1-xMnO3 interface. , 2014, Nature materials.

[16]  Lu You,et al.  Non-volatile memory based on the ferroelectric photovoltaic effect , 2013, Nature Communications.

[17]  R. Ramesh,et al.  Oxide interfaces: pathways to novel phenomena , 2012 .

[18]  Naoya Shibata,et al.  Differential phase-contrast microscopy at atomic resolution , 2012, Nature Physics.

[19]  H. Tan,et al.  Oxidation state and chemical shift investigation in transition metal oxides by EELS , 2012 .

[20]  Leo Gross,et al.  Imaging the charge distribution within a single molecule. , 2012, Nature nanotechnology.

[21]  H. Hwang,et al.  Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface , 2011, 1108.3150.

[22]  J. Mannhart,et al.  Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces , 2011, 1105.0235.

[23]  P. Midgley Electronic Bonding Revealed by Electron Diffraction , 2011, Science.

[24]  J. Etheridge,et al.  The Bonding Electron Density in Aluminum , 2011, Science.

[25]  Ho Won Jang,et al.  Metallic and Insulating Oxide Interfaces Controlled by Electronic Correlations , 2011, Science.

[26]  Yi Zhang,et al.  Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. , 2011, Nano letters.

[27]  Nicola A. Spaldin,et al.  Multiferroics: Past, present, and future , 2010 .

[28]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[29]  Masashi Kawasaki,et al.  Quantum Hall Effect in Polar Oxide Heterostructures , 2007, Science.

[30]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[31]  Junling Wang,et al.  Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions , 2004 .

[32]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[33]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[34]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[35]  Ram Seshadri,et al.  Visualizing the Role of Bi 6s “Lone Pairs” in the Off-Center Distortion in Ferromagnetic BiMnO3 , 2001 .

[36]  J. Zuo,et al.  Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O , 1999, Nature.

[37]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[38]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[42]  Chan,et al.  Density-functional energies and forces with Gaussian-broadened fractional occupations. , 1994, Physical review. B, Condensed matter.

[43]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[44]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[45]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[46]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[47]  Susanne Stemmer,et al.  Position averaged convergent beam electron diffraction: theory and applications. , 2010, Ultramicroscopy.

[48]  Carolo Friederico Gauss Theoria Attractionis Corporum Sphaeroidicorum Ellipticorum Homogeneorum , 1877 .