Origin of coherent structures in a discrete chaotic medium.

Using as an example a large lattice of locally interacting Hindmarsh-Rose chaotic neurons, we disclose the origin of ordered structures in a discrete nonequilibrium medium with fast and slow chaotic oscillations. The origin of the ordering mechanism is related to the appearance of a periodic average dynamics in the group of chaotic neurons whose individual slow activity is significantly synchronized by the group mean field. Introducing the concept of a "coarse grain" as a cluster of neuron elements with periodic averaged behavior allows consideration of the dynamics of a medium composed of these clusters. A study of this medium reveals spatially ordered patterns in the periodic and slow dynamics of the coarse grains that are controlled by the average intensity of the fast chaotic pulsation.