Altered cellular metabolism in gliomas — an emerging landscape of actionable co-dependency targets

[1]  T. Cloughesy,et al.  Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. , 2019, Cell metabolism.

[2]  T. Kuner,et al.  Glutamatergic synaptic input to glioma cells drives brain tumour progression , 2019, Nature.

[3]  Shawn M. Gillespie,et al.  Electrical and synaptic integration of glioma into neural circuits , 2019, Nature.

[4]  A. Korshunov,et al.  Acyl-CoA-Binding Protein Drives Glioblastoma Tumorigenesis by Sustaining Fatty Acid Oxidation. , 2019, Cell metabolism.

[5]  Inti Zlobec,et al.  Synaptic proximity enables NMDAR signaling to promote brain metastasis , 2019, Nature.

[6]  C. Thompson,et al.  Metabolic regulation of cell growth and proliferation , 2019, Nature Reviews Molecular Cell Biology.

[7]  V. Bafna,et al.  Extrachromosomal oncogene amplification in tumour pathogenesis and evolution , 2019, Nature Reviews Cancer.

[8]  V. Bafna,et al.  NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling , 2019, Nature.

[9]  B. Garcia,et al.  Target identification reveals lanosterol synthase as a vulnerability in glioma , 2019, Proceedings of the National Academy of Sciences.

[10]  P. Gutin,et al.  Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma , 2019, Nature.

[11]  D. Stein,et al.  Progesterone Treatment Attenuates Glycolytic Metabolism and Induces Senescence in Glioblastoma , 2019, Scientific Reports.

[12]  P. Mischel,et al.  Glioma Stem Cell Specific Super Enhancer Promotes Polyunsaturated Fatty Acid Synthesis to Support EGFR Signaling. , 2019, Cancer discovery.

[13]  Christian M. Metallo,et al.  Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma , 2018, Cell.

[14]  Edith M. Ross,et al.  KHS101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice , 2018, Science Translational Medicine.

[15]  Hai Yan,et al.  Biological Role and Therapeutic Potential of IDH Mutations in Cancer. , 2018, Cancer cell.

[16]  P. Mischel,et al.  Targeting cancer's metabolic co-dependencies: A landscape shaped by genotype and tissue context. , 2018, Biochimica et biophysica acta. Reviews on cancer.

[17]  R. Deberardinis,et al.  Applications of metabolomics to study cancer metabolism. , 2018, Biochimica et biophysica acta. Reviews on cancer.

[18]  K. Brindle,et al.  Metabolic Imaging Detects Low Levels of Glycolytic Activity That Vary with Levels of c-Myc Expression in Patient-Derived Xenograft Models of Glioblastoma. , 2018, Cancer research.

[19]  M. Protopopova,et al.  An inhibitor of oxidative phosphorylation exploits cancer vulnerability , 2018, Nature Medicine.

[20]  M. Weirauch,et al.  AMP Kinase Promotes Glioblastoma Bioenergetics and Tumor Growth , 2018, Nature Cell Biology.

[21]  A. Iafrate,et al.  Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate , 2018, Nature Communications.

[22]  Geoff S. Higgins,et al.  Oxidative Phosphorylation as an Emerging Target in Cancer Therapy , 2018, Clinical Cancer Research.

[23]  R. McLendon,et al.  Adaptive Evolution of the GDH2 Allosteric Domain Promotes Gliomagenesis by Resolving IDH1R132H-Induced Metabolic Liabilities. , 2018, Cancer research.

[24]  Karl-Heinz Krause,et al.  Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma. , 2017, Cancer cell.

[25]  C. Thompson,et al.  In Vivo Imaging of Glutamine Metabolism to the Oncometabolite 2-Hydroxyglutarate in IDH1/2 Mutant Tumors. , 2017, Cell metabolism.

[26]  Kun Mu,et al.  Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma , 2017, Cancer cell.

[27]  Frédérick A. Mallette,et al.  Oncogenic Activities of IDH1/2 Mutations: From Epigenetics to Cellular Signaling. , 2017, Trends in cell biology.

[28]  A. Letai,et al.  Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma , 2017, Nature Medicine.

[29]  Qiulian Wu,et al.  MYC-Regulated Mevalonate Metabolism Maintains Brain Tumor-Initiating Cells. , 2017, Cancer research.

[30]  R. Teusan,et al.  Efficient Mitochondrial Glutamine Targeting Prevails Over Glioblastoma Metabolic Plasticity , 2017, Clinical Cancer Research.

[31]  Emanuel F Petricoin,et al.  Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma , 2018, Nature Genetics.

[32]  G. Rao,et al.  Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy. , 2017, Molecular cell.

[33]  R. Eckel,et al.  Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism , 2017, Front. Endocrinol..

[34]  A. Ashworth,et al.  Marked for death: targeting epigenetic changes in cancer , 2017, Nature Reviews Drug Discovery.

[35]  Matthew G. Vander Heiden,et al.  Understanding the Intersections between Metabolism and Cancer Biology , 2017, Cell.

[36]  C. Thompson,et al.  Metabolic Reprogramming in Brain Tumors. , 2017, Annual review of pathology.

[37]  Jessica M. Rusert,et al.  Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity , 2017, Nature.

[38]  S. Venneti,et al.  Non-invasive metabolic imaging of brain tumours in the era of precision medicine , 2016, Nature Reviews Clinical Oncology.

[39]  G. Hon,et al.  An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers. , 2016, Cancer cell.

[40]  A. Schulze,et al.  The multifaceted roles of fatty acid synthesis in cancer , 2016, Nature Reviews Cancer.

[41]  E. Maher,et al.  Prospective Longitudinal Analysis of 2-Hydroxyglutarate Magnetic Resonance Spectroscopy Identifies Broad Clinical Utility for the Management of Patients With IDH-Mutant Glioma. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[42]  N. Hay,et al.  Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? , 2016, Nature Reviews Cancer.

[43]  Frédérick A. Mallette,et al.  The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway , 2016, Nature Communications.

[44]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[45]  Maristela L Onozato,et al.  Myc-Driven Glycolysis Is a Therapeutic Target in Glioblastoma , 2016, Clinical Cancer Research.

[46]  W. Banks,et al.  From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery , 2016, Nature Reviews Drug Discovery.

[47]  Gelareh Zadeh,et al.  Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. , 2016, Neuro-oncology.

[48]  Abhishek K. Jha,et al.  Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. , 2016, Cell metabolism.

[49]  Steven J. M. Jones,et al.  Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma , 2016, Cell.

[50]  C. Thompson,et al.  The Emerging Hallmarks of Cancer Metabolism. , 2016, Cell metabolism.

[51]  Juan Li,et al.  Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma , 2016, Neuroreport.

[52]  Hai Yan,et al.  Isocitrate dehydrogenase mutations in gliomas. , 2016, Neuro-oncology.

[53]  A. Iafrate,et al.  Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion. , 2015, Cancer cell.

[54]  B. Faubert,et al.  Myc induces expression of glutamine synthetase through promoter demethylation , 2015 .

[55]  A. Chakravarti,et al.  Glucose-Mediated N-glycosylation of SCAP Is Essential for SREBP-1 Activation and Tumor Growth. , 2015, Cancer cell.

[56]  Eytan Ruppin,et al.  Glutamine Synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma , 2015, Nature Cell Biology.

[57]  Webster K. Cavenee,et al.  EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. , 2015, Molecular cell.

[58]  T. Graeber,et al.  2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. , 2015, Cell metabolism.

[59]  Webster K. Cavenee,et al.  Glucose-dependent acetylation of Rictor promotes targeted cancer therapy resistance , 2015, Proceedings of the National Academy of Sciences.

[60]  Flore Kruiswijk,et al.  p53 in survival, death and metabolic health: a lifeguard with a licence to kill , 2015, Nature Reviews Molecular Cell Biology.

[61]  Steven J. M. Jones,et al.  Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. , 2015, The New England journal of medicine.

[62]  Lorenzo Galluzzi,et al.  Acetyl coenzyme A: a central metabolite and second messenger. , 2015, Cell metabolism.

[63]  Pierre J. Magistretti,et al.  A Cellular Perspective on Brain Energy Metabolism and Functional Imaging , 2015, Neuron.

[64]  Satoru Miyano,et al.  Mutational landscape and clonal architecture in grade II and III gliomas , 2015, Nature Genetics.

[65]  T. Cloughesy,et al.  Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma , 2015, Nature Reviews Cancer.

[66]  S. Niclou,et al.  Comprehensive Analysis of Glycolytic Enzymes as Therapeutic Targets in the Treatment of Glioblastoma , 2015, PloS one.

[67]  C. Toulas,et al.  Metformin Inhibits Growth of Human Glioblastoma Cells and Enhances Therapeutic Response , 2015, PloS one.

[68]  D. Sabatini,et al.  SHMT2 drives glioma cell survival in the tumor microenvironment but imposes a dependence on glycine clearance , 2015 .

[69]  P. Mischel,et al.  Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. , 2015, The Journal of clinical investigation.

[70]  C. Brennan,et al.  Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo , 2015, Science Translational Medicine.

[71]  H. Ellis,et al.  Current Therapeutic Advances Targeting EGFR and EGFRvIII in Glioblastoma , 2015, Front. Oncol..

[72]  M. Belting,et al.  Global Profiling of Metabolic Adaptation to Hypoxic Stress in Human Glioblastoma Cells , 2015, PloS one.

[73]  S. Weinberg,et al.  Targeting mitochondria metabolism for cancer therapy. , 2015, Nature chemical biology.

[74]  G. Reifenberger,et al.  Glioma , 2015, Nature Reviews Disease Primers.

[75]  Tyler E. Miller,et al.  An epigenetic gateway to brain tumor cell identity , 2015, Nature Neuroscience.

[76]  R. Hammer,et al.  Acetate Dependence of Tumors , 2014, Cell.

[77]  R. Deberardinis,et al.  Acetate Is a Bioenergetic Substrate for Human Glioblastoma and Brain Metastases , 2014, Cell.

[78]  M. Hedehus,et al.  Hominoid-specific enzyme GLUD2 promotes growth of IDH1R132H glioma , 2014, Proceedings of the National Academy of Sciences.

[79]  Ian A Blair,et al.  Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. , 2014, Cell metabolism.

[80]  P. Mischel,et al.  mTORC2 in the center of cancer metabolic reprogramming , 2014, Trends in Endocrinology & Metabolism.

[81]  Amar Gajjar,et al.  The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma , 2014, Nature Genetics.

[82]  Karen H. Vousden,et al.  Mutant p53 in Cancer: New Functions and Therapeutic Opportunities , 2014, Cancer cell.

[83]  T. Cloughesy,et al.  Glioblastoma: from molecular pathology to targeted treatment. , 2014, Annual review of pathology.

[84]  S. Nelson,et al.  Targeted Therapy Resistance Mediated by Dynamic Regulation of Extrachromosomal Mutant EGFR DNA , 2014, Science.

[85]  J. Shuster,et al.  Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors , 2014, Investigational New Drugs.

[86]  Feng Liu,et al.  mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. , 2013, Cell metabolism.

[87]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[88]  R. Bourgon,et al.  Loss of NAPRT1 Expression by Tumor-Specific Promoter Methylation Provides a Novel Predictive Biomarker for NAMPT Inhibitors , 2013, Clinical Cancer Research.

[89]  C. Dang MYC, metabolism, cell growth, and tumorigenesis. , 2013, Cold Spring Harbor perspectives in medicine.

[90]  Rainer König,et al.  BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1 , 2013, Nature Medicine.

[91]  Douglas L Black,et al.  EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. , 2013, Cell metabolism.

[92]  Fang Wang,et al.  An Inhibitor of Mutant IDH1 Delays Growth and Promotes Differentiation of Glioma Cells , 2013, Science.

[93]  Gary L. Gallia,et al.  TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal , 2013, Proceedings of the National Academy of Sciences.

[94]  C. Thompson,et al.  Metabolic Modulation of Epigenetics in Gliomas , 2013, Brain pathology.

[95]  M. Honavar,et al.  Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. , 2013, Neuro-oncology.

[96]  A. Harris,et al.  Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth , 2013, Cancer & Metabolism.

[97]  K. Aldape,et al.  ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect , 2012, Nature Cell Biology.

[98]  K. Aldape,et al.  PKM2 Phosphorylates Histone H3 and Promotes Gene Transcription and Tumorigenesis , 2012, Cell.

[99]  Hai Yan,et al.  A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation , 2012, Genome research.

[100]  R. Deberardinis,et al.  Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. , 2012, Cell metabolism.

[101]  A. Viale,et al.  IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype , 2012, Nature.

[102]  S. Berger,et al.  IDH mutation impairs histone demethylation and results in a block to cell differentiation , 2012, Nature.

[103]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[104]  Ovidiu C. Andronesi,et al.  Detection of 2-Hydroxyglutarate in IDH-Mutated Glioma Patients by In Vivo Spectral-Editing and 2D Correlation Magnetic Resonance Spectroscopy , 2012, Science Translational Medicine.

[105]  Dinesh Rakheja,et al.  2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated glioma patients , 2011, Nature Medicine.

[106]  P. Watkins,et al.  Brain Fatty Acid Uptake , 2012 .

[107]  Pierre J Magistretti,et al.  Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. , 2011, Cell metabolism.

[108]  K. Aldape,et al.  Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation , 2011, Nature.

[109]  F. Pfrieger,et al.  Cholesterol metabolism in neurons and astrocytes. , 2011, Progress in lipid research.

[110]  M. Prados,et al.  An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. , 2011, Cancer discovery.

[111]  J. Tonn,et al.  Molecular imaging of gliomas with PET: opportunities and limitations. , 2011, Neuro-oncology.

[112]  R. Deberardinis,et al.  Pyruvate carboxylase is required for glutamine-independent growth of tumor cells , 2011, Proceedings of the National Academy of Sciences.

[113]  K. Kinzler,et al.  Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome , 2011, Proceedings of the National Academy of Sciences.

[114]  S. Su,et al.  IDH mutations in glioma and acute myeloid leukemia. , 2010, Trends in molecular medicine.

[115]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[116]  Hai Yan,et al.  IDH1 and IDH2: not your typical oncogenes. , 2010, Cancer cell.

[117]  Omar Abdel-Wahab,et al.  The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. , 2010, Cancer cell.

[118]  I. Pollack,et al.  Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas , 2009, International journal of cancer.

[119]  S. Horvath,et al.  EGFR Signaling Through an Akt-SREBP-1–Dependent, Rapamycin-Resistant Pathway Sensitizes Glioblastomas to Antilipogenic Therapy , 2009, Science Signaling.

[120]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[121]  L. Liau,et al.  Cancer-associated IDH1 mutations produce 2-hydroxyglutarate , 2009, Nature.

[122]  R. Deberardinis,et al.  Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. , 2009, Cancer research.

[123]  Hui Wang,et al.  Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. , 2009, Cancer cell.

[124]  H. Ronald Zielke,et al.  Direct measurement of oxidative metabolism in the living brain by microdialysis: a review , 2009, Journal of neurochemistry.

[125]  J. Dietschy Central nervous system: cholesterol turnover, brain development and neurodegeneration , 2009, Biological chemistry.

[126]  Suzanne Kamel-Reid,et al.  A phase I/II trial of GW572016 (lapatinib) in recurrent glioblastoma multiforme: clinical outcomes, pharmacokinetics and molecular correlation , 2009, Cancer Chemotherapy and Pharmacology.

[127]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[128]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[129]  Claudio R. Santos,et al.  SREBP Activity Is Regulated by mTORC1 and Contributes to Akt-Dependent Cell Growth , 2008, Cell metabolism.

[130]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[131]  R. Deberardinis,et al.  Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis , 2007, Proceedings of the National Academy of Sciences.

[132]  G. Semenza,et al.  Hypoxia-Inducible Factor 1 and Dysregulated c-Myc Cooperatively Induce Vascular Endothelial Growth Factor and Metabolic Switches Hexokinase 2 and Pyruvate Dehydrogenase Kinase 1 , 2007, Molecular and Cellular Biology.

[133]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[134]  A. A. Spector,et al.  The fatty acid composition of human gliomas differs from that found in nonmalignant brain tissue , 1996, Lipids.

[135]  H. Pelicano,et al.  Glycolysis inhibition for anticancer treatment , 2006, Oncogene.

[136]  Mitchel S Berger,et al.  Neural stem cells and the origin of gliomas. , 2005, The New England journal of medicine.

[137]  Daniel J Brat,et al.  Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. , 2005, Neuro-oncology.

[138]  Bruce J. Aronow,et al.  Chromatin Immunoprecipitation Assays Footprints in Glycolytic Genes by Evaluation of Myc E-box Phylogenetic Supplemental Material , 2004 .

[139]  Steve Meaney,et al.  Brain Cholesterol: Long Secret Life Behind a Barrier , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[140]  J. Dietschy,et al.  Cholesterol metabolism in the brain , 2001, Current opinion in lipidology.

[141]  C. Dang,et al.  Deregulation of Glucose Transporter 1 and Glycolytic Gene Expression by c-Myc* , 2000, The Journal of Biological Chemistry.

[142]  M. Wolter,et al.  Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. , 1999, Cancer research.

[143]  K. Black,et al.  Gene expression of GLUT3 and GLUT1 glucose transporters in human brain tumors. , 1994, Brain research. Molecular brain research.

[144]  T. Yoshimoto,et al.  Intratumoral oxygen pressure in malignant brain tumor. , 1991, Journal of neurosurgery.

[145]  J. Kuratsu,et al.  Cholesterol uptake by human glioma cells via receptor-mediated endocytosis of low-density lipoprotein. , 1990, Journal of neurosurgery.

[146]  D. R. Harris,et al.  Diffuse sclerosis and Addison's disease: biochemical studies on gray matter, white matter, and myelin. , 1973, Biochemical medicine.

[147]  J. O'brien,et al.  Lipid composition of the normal human brain: gray matter, white matter, and myelin. , 1965, Journal of lipid research.

[148]  R. C. Macridis A review , 1963 .

[149]  J. Sneep,et al.  With a summary , 1945 .