Fuzzy Real Lines And Dual Real Lines As Poslat Topological, Uniform, And Metric Ordered Semirings With Unity

Nontrivial examples of objects and morphisms are fundamentally important to establishing the credibility of a new category or discipline such as lattice-dependent or fuzzy topology; and often the justifications of the importance of certain objects and the importance of certain morphisms are intertwined. In [33], we established classes of variable-basis morphisms between different fuzzy real lines and between different dual real lines, but left untouched the issue of the canonicity of these objects. In this chapter, we attempt to demonstrate the canonicity of these spaces stemming from the interplay between arithmetic operations and underlying topological structures. We shall summarize the definitions of fuzzy addition and fuzzy multiplication on the fuzzy real lines and indicate their joint-continuity—along with that of the addition and multiplication on the usual real line—with respect to the underlying poslat topologies, as well as the quasi-uniform and uniform continuity (in the case of fuzzy addition and addition) with respect to the underlying quasi-uniform, uniform, and metric structures. These results not only help establish fuzzy topology w.r.t. objects, but enrich our understanding of traditional arithmetic operations.

[1]  Stephen E. Rodabaugh,et al.  Separation axioms and the fuzzy real lines , 1983 .

[2]  R. Lowen A Comparison of Different Compactness Notions in Fuzzy Topological Spaces , 1978 .

[3]  Stephen E. Rodabaugh,et al.  Powerset Operator Foundations For Poslat Fuzzy Set Theories And Topologies , 1999 .

[4]  M. A. Erceg,et al.  Metric spaces in fuzzy set theory , 1979 .

[5]  D. Dubois,et al.  Fuzzy real algebra: Some results , 1979 .

[6]  Stephen E. Rodabaugh,et al.  A theory of fuzzy uniformities with applications to the fuzzy real lines , 1988 .

[7]  C. Wong,et al.  Fuzzy topology: Product and quotient theorems , 1974 .

[8]  R. Goetschel,et al.  Topological properties of fuzzy numbers , 1983 .

[9]  Stephen E. Rodabaugh,et al.  Errata: Complete fuzzy topological hyperfields and fuzzy multiplication in the fuzzy real lines , 1986 .

[10]  Stephen E. Rodabaugh,et al.  The Hausdorff separation axiom for fuzzy topological spaces , 1980 .

[11]  Joseph A. Goguen,et al.  The fuzzy tychonoff theorem , 1973 .

[12]  Stephen E. Rodabaugh,et al.  Lowen, para-Lowen, and α-level functors and fuzzy topologies on the crisp real line , 1988 .

[13]  R. Lowen,et al.  On (R (L), o) , 1983 .

[14]  Alexander P. Sostak,et al.  Axiomatic Foundations Of Fixed-Basis Fuzzy Topology , 1999 .

[15]  Albert J. Klein Closure in fuzzy topology , 1981 .

[16]  A. J. Klein,et al.  Generating fuzzy topologies with semi-closure operators , 1983 .

[17]  Tomasz Kubiak,et al.  L-fuzzy normal spaces and Tietze extension theorem , 1987 .

[18]  S. E. Rodabaugh Fuzzy addition in the L-fuzzy real line , 1982 .

[19]  A. J. Klein,et al.  Generalizing the L-fuzzy unit interval , 1984 .

[20]  Stephen E. Rodabaugh,et al.  Point-set lattice-theoretic topology , 1991 .

[21]  T. Gantner,et al.  COMPACTNESS IN FUZZY TOPOLOGICAL SPACES , 1978 .

[22]  B. Hutton Normality in fuzzy topological spaces , 1975 .

[23]  Ulrich Höhle,et al.  Probabilistische Metriken auf der Menge der nicht negativen Verteilungsfunktionen , 1978 .

[24]  Tomasz Kubiak,et al.  FUZZY TOPOLOGIES OF SCOTT CONTINUOUS FUNCTIONS AND THEIR RELATION TO THE HYPERGRAPH FUNCTOR , 1992 .

[25]  Tomasz Kubiak,et al.  Inserting L-fuzzy Real-valued Functions , 1993 .

[26]  Stephen E. Rodabaugh,et al.  Dynamic topologies and their applications to crisp topologies, fuzzifications of crisp topologies, and fuzzy topologies on the crisp real line , 1988 .

[27]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[28]  Tomasz Kubiak,et al.  On L -Tychonoff spaces , 1995 .

[29]  B. Hutton,et al.  Uniformities on fuzzy topological spaces , 1977 .