On Some Compressible Fluid Models: Korteweg, Lubrication, and Shallow Water Systems

Abstract In this article, we give some mathematical results for an isothermal model of capillary compressible fluids derived by Dunn and Serrin in [1]Dunn JE, Serrin J. On the thermodynamics of interstitial working. Arch Rational Mech Anal. 1985; 88(2):95–133), which can be used as a phase transition model. We consider a periodic domain Ω = T d (d = 2 ou 3) or a strip domain Ω = (0,1) × T d −1. We look at the dependence of the viscosity μ and the capillarity coefficient κwith respect to the density ρ. Depending on the cases we consider, different results are obtained. We prove for instance for a viscosity μ(ρ) = νρ and a surface tension the global existence of weak solutions of the Korteweg system without smallness assumption on the data. This model includes a shallow water model and a lubrication model. We discuss the validity of the result for the shallow water equations since the density is less regular than in the Korteweg case.

[1]  C. D. Levermore,et al.  A shallow water model with eddy viscosity for basins with varying bottom topography , 2001 .

[2]  O. Lebaigue,et al.  The second gradient method for the direct numerical simulation of liquid—vapor flows with phase change , 2001 .

[3]  Pomeau.,et al.  Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  M. Brenner,et al.  ON THE BURSTING OF VISCOUS FILMS , 1999 .

[5]  G. McFadden,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[6]  Linda Sundbye Global Existence for the Dirichlet Problem for the Viscous Shallow Water Equations , 1996 .

[7]  Dening Li,et al.  Global Solutions of a High Dimensional System for Korteweg Materials , 1996 .

[8]  Pierre Seppecher,et al.  Les fluides de Cahn-Hilliard , 1996 .

[9]  Balasubramanya T. Nadiga,et al.  Investigations of a Two-Phase Fluid Model , 1995, comp-gas/9511003.

[10]  A. V. Kazhikhov,et al.  On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid , 1995 .

[11]  P. Orenga Un théorème d'existence de solutions d'un problème de shallow water , 1995 .

[12]  Thomas Erneux,et al.  Nonlinear rupture of free films , 1993 .

[13]  Raphaël Danchin,et al.  Existence of solutions for compressible fluid models of Korteweg type , 2001 .

[14]  Jean-Frédéric Gerbeau,et al.  Derivation of viscous Saint-Venant system for laminar shallow water , 2001 .

[15]  Chi-Kun Lin Potential flow for the compressible viscous fluid and its incompressible limit , 2000 .

[16]  B. Desjardins,et al.  On Weak Solutions for Fluid‐Rigid Structure Interaction: Compressible and Incompressible Models , 1999 .

[17]  A. Bertozzi THE MATHEMATICS OF MOVING CONTACT LINES IN THIN LIQUID FILMS , 1998 .

[18]  P. Lions Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques , 1993 .

[19]  Bernardi Christine,et al.  On the Shallow Water Equations at Low Reynolds Number , 1991 .

[20]  J. E. Dunn,et al.  On the Thermodynamics of Interstitial Working , 1983 .