Molecular targets of vertebrate segmentation: two mechanisms control segmental expression of Xenopus hairy2 during somite formation.

[1]  G. Miyoshi,et al.  Hes7: a bHLH‐type repressor gene regulated by Notch and expressed in the presomitic mesoderm , 2001, Genes to cells : devoted to molecular & cellular mechanisms.

[2]  O. Pourquié Vertebrate segmentation: is cycling the rule? , 2000, Current opinion in cell biology.

[3]  David Ish-Horowicz,et al.  Notch signalling and the synchronization of the somite segmentation clock , 2000, Nature.

[4]  F. Stockdale,et al.  Molecular and cellular biology of avian somite development , 2000, Developmental dynamics : an official publication of the American Association of Anatomists.

[5]  C. Nüsslein-Volhard,et al.  Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity. , 2000, Genes & development.

[6]  O. Pourquié,et al.  Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. , 2000, Development.

[7]  Raphael Kopan,et al.  A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. , 2000, Molecular cell.

[8]  O. Pourquié,et al.  Notch around the clock. , 1999, Current opinion in genetics & development.

[9]  E. Lai,et al.  Discrete enhancer elements mediate selective responsiveness of enhancer of split complex genes to common transcriptional activators. , 1999, Developmental biology.

[10]  J. Campos-Ortega,et al.  her1, a zebrafish pair-rule like gene, acts downstream of notch signalling to control somite development. , 1999, Development.

[11]  C. Niehrs,et al.  Periodic repression of Notch pathway genes governs the segmentation of Xenopus embryos. , 1999, Genes & development.

[12]  R. L. Johnson,et al.  Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation. , 1999, Developmental biology.

[13]  Julian Lewis,et al.  Vertebrate segmentation: The clock is linked to Notch signalling , 1998, Current Biology.

[14]  C Burks,et al.  The K box, a conserved 3' UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. , 1998, Development.

[15]  Nigel A. Brown,et al.  Waves of mouse Lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation , 1998, Current Biology.

[16]  Martin Vingron,et al.  Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning , 1998, Mechanisms of Development.

[17]  Olivier Pourquié,et al.  The lunatic Fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos , 1998, Current Biology.

[18]  O. Pourquié,et al.  Somitogenesis: segmenting a vertebrate. , 1998, Current opinion in genetics & development.

[19]  R. Evans,et al.  A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. , 1998, Genes & development.

[20]  D. Sparrow,et al.  Thylacine 1 is expressed segmentally within the paraxial mesoderm of the Xenopus embryo and interacts with the Notch pathway. , 1998, Development.

[21]  Alfred L. Fisher,et al.  The function of hairy‐related bHLH repressor proteins in cell fate decisions , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[22]  J. Cooke,et al.  A gene that resuscitates a theory--somitogenesis and a molecular oscillator. , 1998, Trends in genetics : TIG.

[23]  O. Pourquié,et al.  Avian hairy Gene Expression Identifies a Molecular Clock Linked to Vertebrate Segmentation and Somitogenesis , 1997, Cell.

[24]  E. Lai,et al.  The Drosophila gene Bearded encodes a novel small protein and shares 3' UTR sequence motifs with multiple Enhancer of split complex genes. , 1997, Development.

[25]  D. Wettstein,et al.  The Notch ligand, X-Delta-2, mediates segmentation of the paraxial mesoderm in Xenopus embryos. , 1997, Development.

[26]  D. Wettstein,et al.  The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. , 1997, Development.

[27]  M. Kirschner,et al.  A Xenopus nodal-related gene that acts in synergy with noggin to induce complete secondary axis and notochord formation. , 1996, Development.

[28]  K. Kroll,et al.  Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. , 1996, Development.

[29]  H. Weintraub,et al.  Specificity for the hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression , 1995, Molecular and cellular biology.

[30]  J. Posakony,et al.  Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. , 1995, Genes & development.

[31]  Christel Brou,et al.  Signalling downstream of activated mammalian Notch , 1995, Nature.

[32]  A. Johnson,et al.  pXeX, a vector for efficient expression of cloned sequences in Xenopus embryos. , 1994, Gene.

[33]  H. Weintraub,et al.  Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. , 1994, Genes & development.

[34]  H. Weintraub,et al.  Xenopus embryos regulate the nuclear localization of XMyoD. , 1994, Genes & development.

[35]  Y. Jan,et al.  Genomic cloning and chromosomal localization of HRY, the human homolog to the Drosophila segmentation gene, hairy. , 1994, Genomics.

[36]  R. Kageyama,et al.  Structure, chromosomal locus, and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-1. Negative autoregulation through the multiple N box elements. , 1994, The Journal of biological chemistry.

[37]  Jonathan M.W. Slack,et al.  The early development of Xenopus laevis: by P. Hausen and M. Riebesell, Springer-Verlag, 1991. £78.50 (vii + 142 pages) ISBN 3 540 53740 6 , 1993 .

[38]  M. Busslinger,et al.  A selective transcriptional induction system for mammalian cells based on Gal4-estrogen receptor fusion proteins. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Shigemoto,et al.  Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. , 1992, Genes & development.

[40]  Zhou Wang,et al.  A gene expression screen. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Paris,et al.  Post-transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes. , 1990, Development.

[42]  J. Gurdon,et al.  MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos. , 1989, The EMBO journal.

[43]  H. Weintraub,et al.  Progressive determination during formation of the anteroposterior axis in Xenopus laevis , 1989, Cell.

[44]  J. Gurdon,et al.  Upstream sequences required for tissue‐specific activation of the cardiac actin gene in Xenopus laevis embryos. , 1986, The EMBO journal.

[45]  W. Knöchel,et al.  The primary structure of the larval beta 1-globin gene of Xenopus laevis and its flanking regions. , 1984, Nucleic acids research.

[46]  J. Williams,et al.  The complete nucleotide sequence of the major adult beta globin gene of Xenopus laevis. , 1983, The Journal of biological chemistry.

[47]  J. Cooke,et al.  Scale of body pattern adjusts to available cell number in amphibian embryos , 1981, Nature.

[48]  J. Cooke,et al.  Control of somite number during morphogenesis of a vertebrate, Xenopus laevis , 1975, Nature.

[49]  G. Fankhauser The Effects of Changes in Chromosome Number on Amphibian Development , 1945, The Quarterly Review of Biology.

[50]  O. Pourquié,et al.  Segmentation of the paraxial mesoderm and vertebrate somitogenesis. , 2000, Current topics in developmental biology.

[51]  R. Harland,et al.  Early development of Xenopus laevis : a laboratory manual , 2000 .

[52]  B. Brand-Saberi,et al.  Evolution and development of distinct cell lineages derived from somites. , 2000, Current topics in developmental biology.

[53]  C. Stern,et al.  Segmentation: a view from the border. , 2000, Current topics in developmental biology.

[54]  John Tyler Bonner,et al.  Evolution and Development , 1998 .

[55]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[56]  J. Faber,et al.  Normal table of Xenopus laevis. , 1994 .

[57]  P. Lawrence The making of a fly , 1992 .