Improved model for single-event burnout mechanism

We describe an improved model for single-event burnout (SEB) mechanism. The model includes the direct tunneling of carriers at the interface of epitaxial layer and substrate. Compared with our previous models, the new model is more successful in reproducing the voltage dependence of the collected charge when incident heavy ions strike the emitter area. The model clearly explains the reason why the emitter stripe region was more susceptible to SEBs.

[1]  Dennis L. Oberg,et al.  First Nondestructive Measurements of Power MOSFET Single Event Burnout Cross Sections , 1987, IEEE Transactions on Nuclear Science.

[2]  S. Matsuda,et al.  Mechanism for single-event burnout of bipolar transistors , 2000 .

[3]  G. H. Johnson,et al.  Single-event burnout of power bipolar junction transistors , 1991 .

[4]  W. N. Grant Electron and hole ionization rates in epitaxial silicon at high electric fields , 1973 .

[5]  J. H. Hohl,et al.  Features of the triggering mechanism for single event burnout of power MOSFETs , 1989 .

[6]  D. Klaassen,et al.  A new recombination model for device simulation including tunneling , 1992 .

[7]  Florin Udrea,et al.  Analysis of SEB and SEGR in super-junction MOSFETs , 2000 .

[8]  A. E. Waskiewicz,et al.  Burnout of Power MOS Transistors with Heavy Ions of Californium-252 , 1986, IEEE Transactions on Nuclear Science.

[9]  R. E. Thomas,et al.  Carrier mobilities in silicon empirically related to doping and field , 1967 .

[10]  Sumio Matsuda,et al.  Enhanced avalanche multiplication factor and single-event burnout , 2003 .

[11]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[12]  Sumio Matsuda,et al.  Single-event burnout of epitaxial bipolar transistors , 1998 .

[13]  A. J. Smith,et al.  Current Induced Avalanche in Epitaxial Structures , 1985, IEEE Transactions on Nuclear Science.

[14]  S. Matsuda,et al.  Mechanism for single-event burnout of power MOSFETs and its characterization technique , 1992 .