Trombe walls: A review of opportunities and challenges in research and development

Green building and sustainable architecture are new techniques for addressing the environmental and energy crises. Trombe walls are regarded as a sustainable architectural technology for heating and ventilation. This article reviews the application of Trombe walls in buildings. The reviews discuss the characteristics of Trombe walls, including Trombe-wall configurations, and Trombe-wall technology. The advantages and disadvantages of this sustainable architectural technology have been highlighted, and future research questions have been identified.

[1]  Michele Pinelli,et al.  Integration between a thermophotovoltaic generator and an Organic Rankine Cycle , 2012 .

[2]  J. Ji,et al.  PV-Trombe Wall Design for Buildings in Composite Climates , 2007 .

[3]  G. N. Tiwari,et al.  Building Integrated Photovoltaic Thermal Systems: For Sustainable Developments , 2010 .

[4]  Antonio Sánchez Kaiser,et al.  Thermal and dynamic optimization of the convective flow in Trombe Wall shaped channels by numerical investigation , 2009 .

[5]  Ellen G. Brehob,et al.  Simulated and experimental performance of a heat pipe assisted solar wall , 2012 .

[6]  Saad Mekhilef,et al.  A review on solar energy use in industries , 2011 .

[7]  Minoru Mizuno,et al.  Numerical study on a low energy architecture based upon distributed heat storage system , 2001 .

[8]  Joaquim Ferreira,et al.  In search of better energy performance in the Portuguese buildings—The case of the Portuguese regulation , 2011 .

[9]  Jibao Shen,et al.  Numerical study on thermal behavior of classical or composite Trombe solar walls , 2007 .

[10]  M. Chantant,et al.  Experimental thermal study of a solar wall of composite type , 1997 .

[11]  Paul Torcellini,et al.  Trombe Walls in Low-Energy Buildings: Practical Experiences; Preprint , 2004 .

[12]  David Morillón Gálvez,et al.  Design recommendations for heat discharge systems in walls , 2010 .

[13]  Guohui Gan,et al.  A parametric study of Trombe walls for passive cooling of buildings , 1998 .

[14]  Jie Zhu,et al.  Review of passive solar heating and cooling technologies , 2010 .

[15]  Tingting Yang,et al.  Regression methodology for sensitivity analysis of solar heating walls , 2008 .

[16]  Tareq Abu Hamed,et al.  Renewable energy in the Palestinian Territories: Opportunities and challenges , 2012 .

[17]  Nwachukwu Paul Nwosu Trombe wall redesign for a poultry chick brooding application in the equatorial region – analysis of the thermal performance of the system using the Galerkin finite elements , 2010 .

[18]  Tapas K. Mallick,et al.  Effect of solar storage wall on the passive solar heating constructions , 2011 .

[19]  John Psarras,et al.  Sustainable energy technologies in Israel under the CDM: Needs and prospects , 2009 .

[20]  A. V. Sebald,et al.  Efficient simulation of large, controlled passive solar systems: Forward differencing in thermal networks , 1985 .

[21]  J. Natowitz,et al.  Our Energy Future , 2009 .

[22]  Manuela Guedes de Almeida,et al.  Trombe wall thermal performance for a modular façade system in different portuguese climates : Lisbon, Porto, Lajes and Funchal , 2011 .

[23]  Arvind Chel,et al.  Energy conservation in honey storage building using Trombe wall , 2008 .

[24]  V. Nelson,et al.  Introduction to Renewable Energy , 2011 .

[25]  Gian Luca Morini,et al.  Empirical validation and modelling of a naturally ventilated rainscreen faade building , 2011 .

[26]  Weon Mu Jeong,et al.  An overview of ocean renewable energy resources in Korea , 2012 .

[27]  A.Nilufer Egrican,et al.  Experimental approach to the thermal response of passive systems , 2002 .

[28]  Xiaoqiang Zhai,et al.  A review for the applications of solar chimneys in buildings , 2011 .

[29]  Koray Ulgen,et al.  An approach for energy modeling of a building integrated photovoltaic (BIPV) Trombe wall system , 2013 .

[30]  A. V. Sebald,et al.  Performance effects of Trombe wall control strategies , 1979 .

[31]  Antonio Sánchez Kaiser,et al.  Influence of the variable thermophysical properties on the turbulent buoyancy-driven airflow inside open square cavities , 2012 .

[32]  Basak Kundakci Koyunbaba,et al.  The comparison of Trombe wall systems with single glass, double glass and PV panels , 2012 .

[33]  Zerrin Yilmaz,et al.  An approach for energy conscious renovation of residential buildings in Istanbul by Trombe wall system , 2008 .

[34]  J. C. Lam,et al.  Future trends of building heating and cooling loads and energy consumption in different climates , 2011 .

[35]  Luisa F. Cabeza,et al.  Design and performance of energy-efficient solar residential house in Andorra , 2011 .

[36]  Daniel R. Rousse,et al.  A comprehensive review of solar facades. Opaque solar facades , 2012 .

[37]  Jie Ji,et al.  An improved approach for the application of Trombe wall system to building construction with selective thermo-insulation façades , 2009 .

[38]  Nwosu P. Nwachukwu,et al.  Effect of an Absorptive Coating on Solar Energy Storage in a Thrombe wall system , 2008 .

[39]  Michael Frank Hordeski,et al.  Dictionary of Energy Efficiency Technologies , 2004 .

[40]  Kim D. Pressnail,et al.  A more sustainable curtain wall system: Analytical modeling of the solar dynamic buffer zone (SDBZ) curtain wall , 2009 .

[41]  Guohui Gan Simulation of buoyancy-induced flow in open cavities for natural ventilation , 2006 .

[42]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[43]  L. Bourdeau Study of two passive solar systems containing phase change materials for thermal storage , 1980 .

[44]  Christian Ngô,et al.  Our Energy Future: Resources, Alternatives and the Environment , 2009 .

[45]  Ji Jie,et al.  Study of PV-Trombe wall assisted with DC fan , 2007 .

[46]  Jie Ji,et al.  Thermal characteristics of a building-integrated dual-function solar collector in water heating mode , 2011 .

[47]  A. Asnaghi,et al.  Solar chimney power plant performance in Iran , 2012 .

[48]  M. Tunc,et al.  Passive solar heating of buildings using a fluidized bed plus Trombe wall system , 1991 .

[49]  Abraham Yezioro,et al.  A knowledge based CAAD system for passive solar architecture , 2009 .

[50]  Zerrin Yilmaz,et al.  An Approach to Energy Conscious Renovation of Residential Buildings by a Trombe Wall System , 2007 .

[51]  Nadia Ghrab-Morcos,et al.  Modeling coupled heat transfer and air flow in a partitioned building with a zonal model: Application to the winter thermal comfort , 2009 .

[52]  Anne Grete Hestnes,et al.  Solar Energy Houses: Strategies, Technologies, Examples , 2013 .

[53]  D. Popp,et al.  Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts , 2008 .

[54]  S. Lassue,et al.  Study of solar walls — validating a simulation model , 2002 .

[55]  Daniele Fiaschi,et al.  Design and exergy analysis of solar roofs: A viable solution with esthetic appeal to collect solar heat , 2012 .

[56]  Yvan Dutil,et al.  Experimental study of small-scale solar wall integrating phase change material , 2012 .

[57]  M. Hatamipour,et al.  Passive cooling systems in buildings: Some useful experiences from ancient architecture for natural cooling in a hot and humid region , 2008 .

[58]  Wei Feng,et al.  Integrating Passive Cooling and Solar Techniques into the Existing Building in South China , 2011 .

[59]  B. Draoui,et al.  The thermal performances of a solar wall , 2012 .

[60]  Jon Hand,et al.  Building-integrated photovoltaic and thermal applications in a subtropical hotel building , 2003 .

[61]  Semiha Kartal,et al.  Heat gain through Trombe wall using solar energy in a cold region of Turkey , 2010 .

[62]  Haris Doukas,et al.  EU-MENA energy technology transfer under the CDM: Israel as a frontrunner? , 2010 .

[63]  Wei Sun,et al.  Performance of PV-Trombe wall in winter correlated with south façade design , 2011 .

[64]  Kamaruzzaman Sopian,et al.  Review of windcatcher technologies , 2012 .

[65]  Joseph Khedari,et al.  The Modified Trombe Wall: A simple ventilation means and an efficient insulating material , 1998 .

[66]  Himanshu Dehra,et al.  A two dimensional thermal network model for a photovoltaic solar wall , 2009 .

[67]  Marco Sala,et al.  Architecture : comfort and energy , 1998 .

[68]  Abdul Jabbar N. Khalifa,et al.  A comparative performance study of some thermal storage materials used for solar space heating , 2009 .

[69]  Peng Chen,et al.  An Economic Analysis and Calculation for Selecting of the Phase-Change Heat Storage Materials Used in the Roof with a Solar Energy Storage Ventilation Systems , 2012 .

[70]  Stas Burek,et al.  Experimental study of the influence of collector height on the steady state performance of a passive solar air heater , 2010 .

[71]  Edward Allen,et al.  The Architect's studio companion : rules of thumb for preliminary design / Edward Allen and Joseph Iano , 1995 .

[72]  Manjusha Misra The Elements of Architecture: Principles of Environmental Performance in Buildings , 2011 .

[73]  Janis Birkeland,et al.  Positive Development: From Vicious Circles to Virtuous Cycles through Built Environment Design , 2008 .

[74]  Danny H.W. Li,et al.  Impact of climate change on energy use in the built environment in different climate zones – A review , 2012 .

[75]  Albert Thumann,et al.  Handbook of Energy Engineering , 2020 .

[76]  Francesca Stazi,et al.  The behaviour of solar walls in residential buildings with different insulation levels: An experimental and numerical study , 2012 .

[77]  Afshin Abedi Utilization Of Solar Air Collectors For Heating Of Isfahan Buildings In IRAN , 2012 .

[78]  V. V. Tyagi,et al.  PCM thermal storage in buildings: A state of art , 2007 .

[79]  L. Kazmerski,et al.  Optimization and life-cycle cost of health clinic PV system for a rural area in southern Iraq using HOMER software , 2010 .

[80]  Harold Bennett Olin,et al.  Construction: Principles, Materials and Methods , 1980 .

[81]  B. Chen,et al.  The effect of Trombe wall on indoor humid climate in Dalian, China , 2006 .

[82]  N. Teschner,et al.  Integrated transitions toward sustainability: The case of water and energy policies in Israel , 2012 .

[83]  Robert F. Boehm,et al.  Passive building energy savings: A review of building envelope components , 2011 .

[84]  Brian Linfoot,et al.  Disruption to benthic habitats by moorings of wave energy installations: A modelling case study and implications for overall ecosystem functioning , 2012 .

[85]  Ruud Weijermars,et al.  Weighted Average Cost of Retail Gas (WACORG) highlights pricing effects in the US gas value chain: Do we need wellhead price-floor regulation to bail out the unconventional gas industry? , 2011 .

[86]  J. Douglas Balcomb,et al.  Passive solar buildings , 1992 .

[87]  Luisa F. Cabeza,et al.  Use of microencapsulated PCM in concrete walls for energy savings , 2007 .

[88]  Samar Jaber,et al.  Optimum design of Trombe wall system in mediterranean region , 2011 .

[89]  E. Bilgen,et al.  Theoretical study of a composite Trombe-Michel wall solar collector system , 1987 .

[90]  Jibao Shen,et al.  Numerical study of classical and composite solar walls by TRNSYS , 2007 .

[91]  Samuel Hassid,et al.  Developments in the residential energy sector in Israel , 2011 .

[92]  Hussein A. Kazem,et al.  Renewable energy in Oman: Status and future prospects , 2011 .

[93]  A. A. M. Sayigh,et al.  Energy conservation in buildings : the achievement of 50% energy saving--an environmental challenge? : proceedings of Northsun 90, an international conference, University of Reading, UK, 18-21 September 1990 , 1991 .

[94]  J. D. Balcomb,et al.  Simple empirical method for estimating the performance of a passive solar heated building of the thermal storage wall type , 1978 .

[95]  T. Knowles,et al.  Proportioning composites for efficient thermal storage walls , 1983 .