REDISTRIBUTION OF PARTICLES ACROSS THE NUCLEUS OF COMET 67P/CHURYUMOV-GERASIMENKO

We present an investigation of the surface properties of areas on the nucleus of comet 67P/Churyumov-Gerasimenko. Aims. We aim to show that transport of material from one part of the cometary nucleus to another is a significant mechanism that influences the appearance of the nucleus and the surface thermal properties. Methods. We used data from the OSIRIS imaging system onboard the Rosetta spacecraft to identify surface features on the nu- cleus that can be produced by various transport mechanisms. We used simple calculations based on previous works to establish the plausibility of dust transport from one part of the nucleus to another. Results. We show by observation and modeling that “airfall” as a consequence of non-escaping large particles emitted from the neck region of the nucleus is a plausible explanation for the smooth thin deposits in the northern hemisphere of the nucleus. The consequences are also discussed. We also present observations of aeolian ripples and ventifacts. We show by numerical modeling that a type of saltation is plausible even under the rarified gas densities seen at the surface of the nucleus. However, interparticle cohesive forces present difficulties for this model, and an alternative mechanism for the initiation of reptation and creep may result from the airfall mechanism. The requirements on gas density and other parameters of this alternative make it a more attractive explanation for the observations. The uncertainties and implications are discussed.

[1]  S. Debei,et al.  Geomorphology and spectrophotometry of Philae’s landing site on comet 67P/Churyumov-Gerasimenko , 2015 .

[2]  J. Berthelier,et al.  Rosetta mission results pre-perihelion Special feature Comparison of 3 D kinetic and hydrodynamic models to ROSINA-COPS measurements of the neutral coma of 67 P / Churyumov-Gerasimenko , 2015 .

[3]  S. Debei,et al.  Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko , 2015 .

[4]  S. Debei,et al.  Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations , 2015 .

[5]  S. Debei,et al.  Rosetta mission results pre-perihelion Special feature Regional surface morphology of comet 67 P / Churyumov-Gerasimenko from Rosetta / OSIRIS images ? , 2015 .

[6]  S. Debei,et al.  Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko , 2015 .

[7]  D. Sears,et al.  Formation of the “ponds” on asteroid (433) Eros by fluidization , 2015 .

[8]  Eric Schindhelm,et al.  First extreme and far ultraviolet spectrum of a Comet Nucleus: Results from 67P/Churyumov-Gerasimenko , 2015 .

[9]  S. Debei,et al.  The morphological diversity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[10]  S. Debei,et al.  Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun , 2015, Science.

[11]  T. Encrenaz,et al.  Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[12]  U. Fink,et al.  The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.

[13]  S. Debei,et al.  On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[14]  N. Thomas,et al.  The spatial distribution of water in the inner coma of Comet 9P/Tempel 1: Comparison between models and observations , 2014 .

[15]  J. Kok,et al.  Mechanisms limiting the growth of aeolian megaripples , 2014 .

[16]  L. Prockter,et al.  Origin and flatness of ponds on asteroid 433 Eros , 2013 .

[17]  D. Bramich,et al.  Beginning of activity in 67P/Churyumov-Gerasimenko and predictions for 2014–2015 , 2013, 1307.7978.

[18]  Xu Wang,et al.  Experimental demonstration of the role of cohesion in electrostatic dust lofting , 2013 .

[19]  M. Belton,et al.  The temperature, thermal inertia, roughness and color of the nuclei of Comets 103P/Hartley 2 and 9P/Tempel 1 , 2013 .

[20]  A. Cheng,et al.  Surface geomorphology of Jupiter Family Comets: A geologic process perspective , 2013 .

[21]  Andrew R. Poppe,et al.  The effect of surface topography on the lunar photoelectron sheath and electrostatic dust transport , 2012 .

[22]  F. Scholten,et al.  The northern hemisphere of asteroid (21) Lutetia—topography and orthoimages from Rosetta OSIRIS NAC image data , 2012 .

[23]  Peter H. Schultz,et al.  The detection, localization, and dynamics of large icy particles surrounding Comet 103P/Hartley 2 , 2012 .

[24]  J. Kok,et al.  The physics of wind-blown sand and dust , 2012, Reports on progress in physics. Physical Society.

[25]  H. Melosh,et al.  EPOXI at Comet Hartley 2 , 2011, Science.

[26]  Olivier S. Barnouin,et al.  Boulders and ponds on the Asteroid 433 Eros , 2010 .

[27]  K. Klaasen,et al.  Thermal Inertia and Surface Roughness of Comet 9P/Tempel 1 Derived from Recalibrated Deep Impact NIR Spectroscopy , 2010 .

[28]  D. Scheeres,et al.  Scaling forces to asteroid surfaces: The role of cohesion , 2010, 1002.2478.

[29]  E. Quirico,et al.  Chemical characterization of Titan's tholins: solubility, morphology and molecular structure revisited. , 2009, The journal of physical chemistry. A.

[30]  M. Belton,et al.  Fluidization and multiphase transport of particulate cometary material as an explanation of the smooth terrains and repetitive outbursts on 9P/Tempel 1 , 2009 .

[31]  R. Versluis,et al.  Particle Removal in Linear Shear Flow: Model Prediction and Experimental Validation , 2009 .

[32]  S. Debei,et al.  OSIRIS – The Scientific Camera System Onboard Rosetta , 2007 .

[33]  Jörgen Vedin,et al.  Particle-fluid simulation of the auroral current circuit , 2006 .

[34]  J. Grotzinger,et al.  Spatial grain size sorting in eolian ripples and estimation of wind conditions on planetary surfaces: Application to Meridiani Planum, Mars , 2006 .

[35]  Daniel J. Scheeres,et al.  Characterizing and navigating small bodies with imaging data , 2006 .

[36]  Bruno Andreotti,et al.  A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples , 2006, cond-mat/0603656.

[37]  V. Zakharov,et al.  Direct Monte Carlo and multifluid modeling of the circumnuclear dust coma , 2005 .

[38]  P. Claudin,et al.  Aeolian sand ripples: experimental study of fully developed states. , 2005, Physical review letters.

[39]  Jong-Shinn Wu,et al.  Parallel DSMC method using dynamic domain decomposition , 2005 .

[40]  M. Horányi,et al.  Dust transport in photoelectron layers and the formation of dust ponds on Eros , 2005 .

[41]  Jong-Shinn Wu,et al.  Parallel three-dimensional DSMC method using mesh refinement and variable time-step scheme , 2004, Comput. Phys. Commun..

[42]  J. Wu,et al.  Parallel three-dimensional direct simulation Monte Carlo method and its applications , 2003 .

[43]  Clark R. Chapman,et al.  Ponded deposits on asteroid 433 Eros , 2002 .

[44]  M. Robinson,et al.  The nature of ponded deposits on Eros , 2001, Nature.

[45]  Andrew F. Cheng,et al.  Small-Scale Topography of 433 Eros from Laser Altimetry and Imaging , 2000 .

[46]  Y. Shao,et al.  A simple expression for wind erosion threshold friction velocity , 2000 .

[47]  L. Prigozhin Nonlinear dynamics of Aeolian sand ripples. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  H. Keller,et al.  Physical risks of landing on a cometary nucleus , 1997 .

[49]  K. Seiferlin,et al.  Thermal properties of cometary ices and sublimation residua including organics , 1996 .

[50]  H. U. Keller,et al.  On the stability of dust particle orbits around cometary nuclei , 1995 .

[51]  D. Möhlmann,et al.  Surface Regolith and Environment of Comets , 1994 .

[52]  E. Kührt,et al.  The Formation of Cometary Surface Crusts , 1994 .

[53]  D. Prialnik,et al.  Gas release in comet nuclei. , 1990, The Astrophysical journal.

[54]  D. J. Lien,et al.  Dust in comets. I, Thermal properties of homogeneous and heterogeneous grains , 1990 .

[55]  D. Thomas,et al.  Wind as a Geological Process on Earth, Mars, Venus and Titan , 1988 .

[56]  P. Haff,et al.  Simulation of Eolian Saltation , 1988, Science.

[57]  Jochen Kissel,et al.  Aspects of the major element composition of Halley's dust , 1988, Nature.

[58]  Y. Kitamura Axisymmetric dusty gas jet in the inner coma of a comet. II. The case of isolated jets , 1987 .

[59]  A. Nagy,et al.  Time-dependent dusty gasdynamical flow near cometary nuclei , 1985 .

[60]  B. White,et al.  Saltation threshold on Mars - The effect of interparticle force, surface roughness, and low atmospheric density. [from wind-tunnel experiments] , 1976 .

[61]  H. Heywood The Physics of Blown Sand and Desert Dunes , 1941, Nature.

[62]  D. Jewitt From the Cradle to the Grave: The Rise and Demise of the Comets , 2005 .

[63]  D. Campbell,et al.  Radar Studies of Comet Nuclei and Grain Comae , 2005 .

[64]  N. Bridges,et al.  Terrestrial analogs to wind‐related features at the Viking and Pathfinder landing sites on Mars , 2002 .

[65]  D. Scheeres,et al.  Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia , 1996 .

[66]  R. Bagnold,et al.  The Physics of Blown Sand and Desert Dunes , 1941 .