Wavefront Sets of Unipotent Representations of Reductive $p$-adic Groups II
暂无分享,去创建一个
[1] Cheng-Chiang Tsai. Geometric wave-front set may not be a singleton , 2022, 2207.13445.
[2] D. Ciubotaru,et al. The Wavefront Sets of Unipotent Supercuspidal Representations , 2022, 2206.08628.
[3] D. Ciubotaru,et al. Wavefront Sets of Unipotent Representations of Reductive $p$-adic Groups I , 2021, 2112.14354.
[4] G. Lusztig. From families in Weyl groups to Springer representations , 2020, Bulletin of the Institute of Mathematics Academia Sinica NEW SERIES.
[5] M. Geck,et al. The Character Theory of Finite Groups of Lie Type , 2020 .
[6] P. Tiep,et al. Lusztig induction, unipotent supports, and character bounds , 2018, Transactions of the American Mathematical Society.
[7] M. Solleveld. A local Langlands correspondence for unipotent representations , 2018, American Journal of Mathematics.
[8] A. Aubert,et al. Affine Hecke algebras for Langlands parameters , 2017, 1701.03593.
[9] Jean-Loup Waldspurger. Représentations de réduction unipotente pour SO(2n + 1), III : Exemples de fronts d’onde , 2016, Algebra & Number Theory.
[10] K. Chan. Duality for Ext-groups and extensions of discrete series for graded Hecke algebras , 2014, 1410.1495.
[11] M. Solleveld. On the classification of irreducible representations of affine Hecke algebras with unequal parameters , 2010, 1008.0177.
[12] D. Ciubotaru,et al. Unitary equivalences for reductive p-adic groups , 2009 .
[13] D. Ciubotaru,et al. On unitary unipotent representations of $p$-adic groups and affine Hecke algebras with unequal parameters , 2008, 0810.5366.
[14] G. Lusztig,et al. Unipotent classes and special Weyl group representations , 2007, 0711.4287.
[15] A. Aubert,et al. SUPPORTS UNIPOTENTS DE FAISCEAUX CARACTÈRES , 2003, Journal of the Institute of Mathematics of Jussieu.
[16] Pramod N. Achar,et al. An order-reversing duality map for conjugacy classes in Lusztig's canonical quotient , 2002, math/0203082.
[17] G. Lusztig. Classification of unipotent representations of simple p -adic groups , 2001, math/0111248.
[18] G. Lusztig. Cuspidal local systems and graded Hecke algebras, III , 2001, math/0108173.
[19] E. Sommers. Lusztig's canonical quotient and generalized duality , 2001, math/0104162.
[20] E. Opdam. ON THE SPECTRAL DECOMPOSITION OF AFFINE HECKE ALGEBRAS , 2001, Journal of the Institute of Mathematics of Jussieu.
[21] Frank Lübeck,et al. Formal degrees and L--packets of unipotent discrete series representations of exceptional p--adic groups , 2000 .
[22] CJ Bushnell,et al. Smooth representations of reductive p‐ADIC groups: structure theory via types , 1998 .
[23] A. Aubert,et al. DUALITÉ DANS LE GROUPE DE GROTHENDIECK DE LA CATÉGORIE DES REPRÉSENTATIONS LISSES DE LONGUEUR FINIE D'UN GROUPE RÉDUCTIF p-ADIQUE , 1995 .
[24] A. Moy,et al. Unrefined minimal K-types forp-adic groups , 1994 .
[25] Dan Barbasch,et al. Reduction to real infinitesimal character in affine Hecke algebras , 1993 .
[26] S. Kato. Duality for representations of a Hecke algebra , 1993 .
[27] George Lusztic. A unipotent support for irreducible representations , 1992 .
[28] George Lusztig,et al. Affine Hecke algebras and their graded version , 1989 .
[29] D. Kazhdan,et al. Proof of the Deligne-Langlands conjecture for Hecke algebras , 1987 .
[30] George Lusztig,et al. Character sheaves, V , 1985 .
[31] R. Kottwitz. STABLE TRACE FORMULA: CUSPIDAL TEMPERED TERMS , 1984 .
[32] G. Lusztig. Intersection cohomology complexes on a reductive group , 1984 .
[33] G. Lehrer,et al. Representations of generic algebras and finite groups of Lie type , 1983 .
[34] K. Pommerening. U¨ber die unipotenten Klassen reduktiver Gruppen II , 1977 .
[35] W. Hesselink. Singularities in the nilpotent scheme of a classical group , 1976 .
[36] R. Rao. Orbital Integrals in Reductive Groups , 1972 .
[37] N. Iwahori,et al. On some bruhat decomposition and the structure of the hecke rings of p-Adic chevalley groups , 1965 .
[38] M. Gerstenhaber. Dominance Over The Classical Groups , 1961 .
[39] Emile Takahiro Okada,et al. The wavefront set of spherical Arthur representations , 2021 .
[40] Tasho Kaletha. The Local Langlands Conjectures for Non-quasi-split Groups , 2016 .
[41] I. Bernstein,et al. Induced representations of reductive p -adic groups. II. On irreducible representations of GL ( n ) , 2003 .
[42] G. Lusztig. Cuspidal local systems and graded Hecke algebras,II, Representations of groups , 1995 .
[43] D. Vogan. The local Langlands conjecture , 1993 .
[44] W. Mcgovern. Nilpotent Orbits In Semisimple Lie Algebra : An Introduction , 1993 .
[45] Noriaki Kawanaka,et al. Shintani lifting and Gelfand-Graev representations , 1987 .
[46] D. Barbasch,et al. Unipotent representations of complex semisimple groups , 1985 .
[47] G. Lusztig,et al. On the Generalized Springer Correspondence for Classical Groups , 1985 .
[48] N. Spaltenstein. On the Generalized Springer Correspondence for Exceptional Groups , 1985 .
[49] N. Spaltenstein. Classes unipotentes et sous-groupes de Borel , 1982 .