Wavefront Sets of Unipotent Representations of Reductive $p$-adic Groups II

The wavefront set is a fundamental invariant of an admissible representation arising from the Harish-Chandra-Howe local character expansion. In this paper, we give a precise formula for the wavefront set of an irreducible representation of real infinitesimal character in Lusztig's category of unipotent representations in terms of the Deligne-Langlands-Lusztig correspondence. Our formula generalizes the main result of arXiv:2112.14354, where this formula was obtained in the Iwahori-spherical case. We deduce that for any irreducible unipotent representation with real infinitesimal character, the algebraic wavefront set is a singleton, verifying a conjecture of M\oeglin and Waldspurger. In the process, we establish new properties of the generalized Springer correspondence in relation to Lusztig's families of unipotent representations of finite reductive groups.

[1]  Cheng-Chiang Tsai Geometric wave-front set may not be a singleton , 2022, 2207.13445.

[2]  D. Ciubotaru,et al.  The Wavefront Sets of Unipotent Supercuspidal Representations , 2022, 2206.08628.

[3]  D. Ciubotaru,et al.  Wavefront Sets of Unipotent Representations of Reductive $p$-adic Groups I , 2021, 2112.14354.

[4]  G. Lusztig From families in Weyl groups to Springer representations , 2020, Bulletin of the Institute of Mathematics Academia Sinica NEW SERIES.

[5]  M. Geck,et al.  The Character Theory of Finite Groups of Lie Type , 2020 .

[6]  P. Tiep,et al.  Lusztig induction, unipotent supports, and character bounds , 2018, Transactions of the American Mathematical Society.

[7]  M. Solleveld A local Langlands correspondence for unipotent representations , 2018, American Journal of Mathematics.

[8]  A. Aubert,et al.  Affine Hecke algebras for Langlands parameters , 2017, 1701.03593.

[9]  Jean-Loup Waldspurger Représentations de réduction unipotente pour SO(2n + 1), III : Exemples de fronts d’onde , 2016, Algebra & Number Theory.

[10]  K. Chan Duality for Ext-groups and extensions of discrete series for graded Hecke algebras , 2014, 1410.1495.

[11]  M. Solleveld On the classification of irreducible representations of affine Hecke algebras with unequal parameters , 2010, 1008.0177.

[12]  D. Ciubotaru,et al.  Unitary equivalences for reductive p-adic groups , 2009 .

[13]  D. Ciubotaru,et al.  On unitary unipotent representations of $p$-adic groups and affine Hecke algebras with unequal parameters , 2008, 0810.5366.

[14]  G. Lusztig,et al.  Unipotent classes and special Weyl group representations , 2007, 0711.4287.

[15]  A. Aubert,et al.  SUPPORTS UNIPOTENTS DE FAISCEAUX CARACTÈRES , 2003, Journal of the Institute of Mathematics of Jussieu.

[16]  Pramod N. Achar,et al.  An order-reversing duality map for conjugacy classes in Lusztig's canonical quotient , 2002, math/0203082.

[17]  G. Lusztig Classification of unipotent representations of simple p -adic groups , 2001, math/0111248.

[18]  G. Lusztig Cuspidal local systems and graded Hecke algebras, III , 2001, math/0108173.

[19]  E. Sommers Lusztig's canonical quotient and generalized duality , 2001, math/0104162.

[20]  E. Opdam ON THE SPECTRAL DECOMPOSITION OF AFFINE HECKE ALGEBRAS , 2001, Journal of the Institute of Mathematics of Jussieu.

[21]  Frank Lübeck,et al.  Formal degrees and L--packets of unipotent discrete series representations of exceptional p--adic groups , 2000 .

[22]  CJ Bushnell,et al.  Smooth representations of reductive p‐ADIC groups: structure theory via types , 1998 .

[23]  A. Aubert,et al.  DUALITÉ DANS LE GROUPE DE GROTHENDIECK DE LA CATÉGORIE DES REPRÉSENTATIONS LISSES DE LONGUEUR FINIE D'UN GROUPE RÉDUCTIF p-ADIQUE , 1995 .

[24]  A. Moy,et al.  Unrefined minimal K-types forp-adic groups , 1994 .

[25]  Dan Barbasch,et al.  Reduction to real infinitesimal character in affine Hecke algebras , 1993 .

[26]  S. Kato Duality for representations of a Hecke algebra , 1993 .

[27]  George Lusztic A unipotent support for irreducible representations , 1992 .

[28]  George Lusztig,et al.  Affine Hecke algebras and their graded version , 1989 .

[29]  D. Kazhdan,et al.  Proof of the Deligne-Langlands conjecture for Hecke algebras , 1987 .

[30]  George Lusztig,et al.  Character sheaves, V , 1985 .

[31]  R. Kottwitz STABLE TRACE FORMULA: CUSPIDAL TEMPERED TERMS , 1984 .

[32]  G. Lusztig Intersection cohomology complexes on a reductive group , 1984 .

[33]  G. Lehrer,et al.  Representations of generic algebras and finite groups of Lie type , 1983 .

[34]  K. Pommerening U¨ber die unipotenten Klassen reduktiver Gruppen II , 1977 .

[35]  W. Hesselink Singularities in the nilpotent scheme of a classical group , 1976 .

[36]  R. Rao Orbital Integrals in Reductive Groups , 1972 .

[37]  N. Iwahori,et al.  On some bruhat decomposition and the structure of the hecke rings of p-Adic chevalley groups , 1965 .

[38]  M. Gerstenhaber Dominance Over The Classical Groups , 1961 .

[39]  Emile Takahiro Okada,et al.  The wavefront set of spherical Arthur representations , 2021 .

[40]  Tasho Kaletha The Local Langlands Conjectures for Non-quasi-split Groups , 2016 .

[41]  I. Bernstein,et al.  Induced representations of reductive p -adic groups. II. On irreducible representations of GL ( n ) , 2003 .

[42]  G. Lusztig Cuspidal local systems and graded Hecke algebras,II, Representations of groups , 1995 .

[43]  D. Vogan The local Langlands conjecture , 1993 .

[44]  W. Mcgovern Nilpotent Orbits In Semisimple Lie Algebra : An Introduction , 1993 .

[45]  Noriaki Kawanaka,et al.  Shintani lifting and Gelfand-Graev representations , 1987 .

[46]  D. Barbasch,et al.  Unipotent representations of complex semisimple groups , 1985 .

[47]  G. Lusztig,et al.  On the Generalized Springer Correspondence for Classical Groups , 1985 .

[48]  N. Spaltenstein On the Generalized Springer Correspondence for Exceptional Groups , 1985 .

[49]  N. Spaltenstein Classes unipotentes et sous-groupes de Borel , 1982 .