Visible Light Effects on Photostrictive/Magnetostrictive PMN‐PT/Ni Heterostructure

The possibility of modifying the ferromagnetic response of a multiferroic heterostructure via fully optical means exploiting the photovoltaic/photostrictive properties of the ferroelectric component is an effective method for tuning the interfacial properties. In this study, the effects of 405 nm visible‐light illumination on the ferroelectric and ferromagnetic responses of (001) Pb(Mg1/3Nb2/3)O3‐0.4PbTiO3 (PMN‐PT)/Ni heterostructures are presented. By combining electrical, structural, magnetic, and spectroscopic measurements, how light illumination above the ferroelectric bandgap energy induces a photovoltaic current and the photostrictive effect reduces the coercive field of the interfacial magnetostrictive Ni layer are shown. Firstly, a light‐induced variation in the Ni orbital moment as a result of sum‐rule analysis of x‐ray magnetic circular dichroic measurements is reported. The reduction of orbital moment reveals a photogenerated strain field. The observed effect is strongly reduced when polarizing out‐of‐plane the PMN‐PT substrate, showing a highly anisotropic photostrictive contribution from the in‐plane ferroelectric domains. These results shed light on the delicate energy balance that leads to sizeable light‐induced effects in multiferroic heterostructures, while confirming the need of spectroscopy for identifying the physical origin of interface behavior.

[1]  P. Dunne,et al.  Photovoltaic‐Ferroelectric Materials for the Realization of All‐Optical Devices , 2021, Advanced Optical Materials.

[2]  E. Tsymbal,et al.  Magnetoelectric Coupling at the Ni/Hf0.5Zr0.5O2 Interface. , 2021, ACS nano.

[3]  L. Xi,et al.  Light modulation of magnetization switching in PMN-PT/Ni heterostructure , 2020 .

[4]  Jianhua Li,et al.  Advancing Versatile Ferroelectric Materials Toward Biomedical Applications , 2020, Advanced science.

[5]  C. Nan,et al.  Opportunities and challenges for magnetoelectric devices , 2019, APL Materials.

[6]  John T. Heron,et al.  Perspective: Magnetoelectric switching in thin film multiferroic heterostructures , 2018, Journal of Applied Physics.

[7]  F. Motti,et al.  Reversible Modification of Ferromagnetism through Electrically Controlled Morphology , 2018, Advanced Electronic Materials.

[8]  Kewei Zhang,et al.  Photovoltaic–Pyroelectric Coupled Effect Induced Electricity for Self‐Powered Photodetector System , 2017, Advanced materials.

[9]  Z. Fan,et al.  Controllable Photovoltaic Effect of Microarray Derived from Epitaxial Tetragonal BiFeO3 Films. , 2017, ACS applied materials & interfaces.

[10]  K. Butler,et al.  Mutual Insight on Ferroelectrics and Hybrid Halide Perovskites: A Platform for Future Multifunctional Energy Conversion , 2017, Advanced materials.

[11]  F. Pan,et al.  Recent progress in voltage control of magnetism: Materials, mechanisms, and performance , 2017, 1702.03730.

[12]  L. Tan,et al.  Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond , 2016 .

[13]  M. Fiebig,et al.  The evolution of multiferroics , 2016 .

[14]  Zhihong Wang,et al.  Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions , 2016, Nature Communications.

[15]  M. Trassin Low energy consumption spintronics using multiferroic heterostructures , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  F. Zheng,et al.  Substantial bulk photovoltaic effect enhancement via nanolayering , 2016, Nature Communications.

[17]  B. Kundys Photostrictive materials , 2015, 1503.01642.

[18]  Hideo Ohno,et al.  Control of magnetism by electric fields. , 2015, Nature nanotechnology.

[19]  J. Glaum,et al.  Mechanisms of aging and fatigue in ferroelectrics , 2015 .

[20]  Ming Liu,et al.  Voltage control of magnetism in multiferroic heterostructures , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  U. Staub,et al.  Artificial multiferroic heterostructures , 2013 .

[22]  Zhenxiang Cheng,et al.  Strain modulated transient photostriction in La and Nb codoped multiferroic BiFeO3 thin films , 2012 .

[23]  E. Tsymbal,et al.  Multi-ferroic and magnetoelectric materials and interfaces , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  D. Kundys,et al.  Light-induced size changes in BiFeO3 crystals. , 2010, Nature materials.

[25]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.

[26]  D. H. Wang,et al.  Converse magnetoelectric effect in ferromagnetic shape memory alloy/piezoelectric laminate , 2009 .

[27]  C. Back,et al.  Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation. , 2009, The Review of scientific instruments.

[28]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[29]  Siu Wing Or,et al.  Giant sharp converse magnetoelectric effect from the combination of a piezoelectric transformer with a piezoelectric/magnetostrictive laminated composite , 2008 .

[30]  J. Prieto,et al.  Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. , 2007, Nature materials.

[31]  Chongjun He,et al.  Determination of optical constants of tetragonal Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals , 2006 .

[32]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[33]  Xinming Wan,et al.  Optical properties of (1-x)Pb(Mg1∕3Nb2∕3)O3-xPbTiO3 single crystals studied by spectroscopic ellipsometry , 2004 .

[34]  K. Kern,et al.  Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles , 2003, Science.

[35]  Haosu Luo,et al.  Optical properties of tetragonal Pb(Mg1/3Nb2/3)0.62Ti0.38O3 single crystal , 2003 .

[36]  Yiping Guo,et al.  The phase transition sequence and the location of the morphotropic phase boundary region in (1 − x)[Pb (Mg1/3 Nb2/3)O3 ]–xPbTiO3 single crystal , 2003 .

[37]  A. Bhalla,et al.  Optical properties of relaxor ferroelectric crystal: Pb(Zn1/3Nb2/3)O3-4.5 % PbTiO3 , 2000 .

[38]  Haosu Luo,et al.  Growth, characterization and properties of relaxor ferroelectric PMN-PT single crystals , 1999 .

[39]  K. Uchino,et al.  Influence of sample thickness on the performance of photostrictive ceramics , 1998 .

[40]  Kenji Uchino,et al.  Photostrictive effect in (Pb, La) (Zr, Ti)O3 , 1985 .

[41]  P. S. Brody Optomechanical bimorph actuator , 1983 .

[42]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .

[43]  B. Kumar,et al.  True-remanent, resistive-leakage and mechanical studies of flux grown 0.64PMN-0.36PT single crystals , 2020 .

[44]  C. Nan,et al.  Multiferroic Heterostructures Integrating Ferroelectric and Magnetic Materials , 2016, Advanced materials.