Multidimensional two-scale dilation equations

[1]  Marc A. Berger,et al.  Random Affine Iterated Function Systems: Curve Generation and Wavelets , 1992, SIAM Rev..

[2]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[3]  Karlheinz Gröchenig,et al.  Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.

[4]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[5]  Nira Dyn,et al.  Analysis of uniform binary subdivision schemes for curve design , 1991 .

[6]  I. Daubechies,et al.  Two-scale difference equations I: existence and global regularity of solutions , 1991 .

[7]  Wavelets as Attractors of Random Dynamical Systems , 1991 .

[8]  Nira Dyn,et al.  Using parameters to increase smoothness of curves and surfaces generated by subdivision , 1990, Comput. Aided Geom. Des..

[9]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[10]  D. Levin,et al.  Interpolating Subdivision Schemes for the Generation of Curves and Surfaces , 1990 .

[11]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[12]  H. Prautzsch,et al.  Refinement and subdivision for spaces of integer translates of a compactly supported function , 1989 .

[13]  C. Micchelli,et al.  Uniform refinement of curves , 1989 .

[14]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[15]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[16]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..