A Self‐Complexing [2]Catenane
暂无分享,去创建一个
Andrew J. P. White | David J. Williams | J. F. Stoddart | F. Raymo | A. White | Jianguo Cao | B. Cabezón | D. Williams | J. Stoddart
[1] David J. Williams,et al. Template‐Directed Synthesis of a Rotacatenane , 1999 .
[2] Dudley H. Williams,et al. The Vancomycin Group of Antibiotics and the Fight against Resistant Bacteria. , 1999, Angewandte Chemie.
[3] Dudley H. Williams,et al. Die Vancomycin-Antibiotica und der Kampf gegen resistente Bakterien , 1999 .
[4] J. Rebek. Reversible Encapsulation and Its Consequences in Solution , 1999 .
[5] J. Sherman,et al. Carceplexes and Hemicarceplexes. , 1999, Chemical reviews.
[6] H. Gibson,et al. Formation of Supramolecular Polymers from Homoditopic Molecules Containing Secondary Ammonium Ions and Crown Ether Moieties , 1999 .
[7] Nori Yamaguchi,et al. BILDUNG SUPRAMOLEKULARER POLYMERE AUS HOMODITOPEN BAUSTEINEN, DIE SEKUNDARE AMMONIOGRUPPEN UND KRONENETHEREINHEITEN ENTHALTEN , 1999 .
[8] G. Kiedrowski,et al. Surface-promoted replication and exponential amplification of DNA analogues , 1998, Nature.
[9] H. Gibson,et al. Self-Organization of a Heteroditopic Molecule to Linear Polymolecular Arrays in Solution. , 1998, Angewandte Chemie.
[10] Nori Yamaguchi,et al. Selbstorganisation eines heteroditopen Molekls zu linearen Aggregaten in Lsung , 1998 .
[11] Andrew J. P. White,et al. Self-assembling supramolecular daisy chains , 1998 .
[12] David J. Williams,et al. Supramolekulare Gänseblümchenketten durch Selbstorganisation , 1998 .
[13] J. Fraser Stoddart,et al. Cyclodextrin-Based Catenanes and Rotaxanes. , 1998, Chemical reviews.
[14] Leonard J. Barbour,et al. An intermolecular (H2O)10 cluster in a solid-state supramolecular complex , 1998, Nature.
[15] Andrew J. P. White,et al. Supramolecular Daisy Chains. , 1998, Angewandte Chemie.
[16] J. F. Stoddart,et al. Oligocatenanes Made to Order1 , 1998 .
[17] E. W. Meijer,et al. Constitutionally asymmetric and chiral [2]pseudorotaxanes , 1998 .
[18] M. Ghadiri,et al. Autocatalytic networks: the transition from molecular self-replication to molecular ecosystems. , 1997, Current opinion in chemical biology.
[19] R. Chapman,et al. Templation and encapsulation in supramolecular chemistry , 1997 .
[20] J. Atwood,et al. A chiral spherical molecular assembly held together by 60 hydrogen bonds , 1997, Nature.
[21] J. Rebek,et al. Self-Assembling Capsules. , 1997, Chemical reviews.
[22] Fritz Vögtle,et al. A New Synthetic Strategy towards Molecules with Mechanical Bonds: Nonionic Template Synthesis of Amide-Linked Catenanes and Rotaxanes , 1997 .
[23] Jonathan Clayden. Nicht‐Biaryl‐Atropisomere: eine neue Klasse von chiralen Reagentien, Hilfsstoffen und Liganden? , 1997 .
[24] Fritz Vögtle,et al. EINE NEUE SYNTHESESTRATEGIE FUR MOLEKULE MIT MECHANISCHEN BINDUNGEN : NICHTIONISCHE TEMPLATSYNTHESE AMIDVERKNUPFTER CATENANE UND ROTAXANE , 1997 .
[25] Paul H. Axelsen,et al. Simultaneous Recognition of a Carboxylate-Containing Ligand and an Intramolecular Surrogate Ligand in the Crystal Structure of an Asymmetric Vancomycin Dimer , 1997 .
[26] Philip A. Gale,et al. Bindung von Anionen: Selbstorganisation von Polypyrrolmakrocyclen† , 1996 .
[27] G. Sheldrick,et al. Crystal structure of vancomycin. , 1996, Structure.
[28] Philip A. Gale,et al. Anion Binding: Self-Assembly of Polypyrrolic Macrocycles , 1996 .
[29] G. Sheldrick,et al. The Molecular and Crystal Structure of the Glycopeptide A‐40926 Aglycone , 1996 .
[30] S. Kauffman. Even peptides do it , 1996, Nature.
[31] Andrew J. P. White,et al. Cyclobis(Paraquat‐4,4′‐Biphenylene)–an Organic Molecular Square , 1996 .
[32] Douglas Philp,et al. SELBSTORGANISATION IN NATURLICHEN UND IN NICHTNATURLICHEN SYSTEMEN , 1996 .
[33] J. F. Stoddart,et al. Interlocked and Intertwined Structures and Superstructures , 1996 .
[34] A. Coleman,et al. The crystal structure of 6I-(6-aminohexyl)amino-6I-deoxycyclomaltoheptaose. , 1996, Carbohydrate research.
[35] Katsuyuki Ogura,et al. Transition-metal-directed assembly of well-defined organic architectures possessing large voids: From macrocycles to [2] catenanes , 1996 .
[36] G. Sheldrick,et al. Structure of ureido‐balhimycin , 1995 .
[37] E. Wintner,et al. Studies in Molecular Replication , 1994 .
[38] Jean-Pierre Sauvage,et al. From Classical Chirality to Topologically Chiral Catenands and Knots , 1993 .
[39] S. Hoffmann. Artificial Replication Systems , 1992 .
[40] Julius Rebek. Molekulare Erkennung mit konkaven Modellverbindungen , 1990 .
[41] J. Rebek. Molecular Recognition with Model Systems , 1990 .
[42] Dudley H. Williams,et al. Aspects of molecular recognition: solvent exclusion and dimerization of the antibiotic ristocetin when bound to a model bacterial cell-wall precursor , 1989 .
[43] Andrew J. P. White,et al. Diazapyrenium-containing catenanes and rotaxanes , 1999 .
[44] M. Fujita,et al. Self-Assembly of [2]Catenanes Containing Metals in Their Backbones , 1999 .
[45] J. F. Stoddart,et al. Template-Directed Syntheses of Rotaxanes , 1996 .
[46] L. Orgel. Unnatural selection in chemical systems. , 1995, Accounts of chemical research.
[47] H. Gibson,et al. Rotaxanes, catenanes, polyrotaxanes, polycatenanes and related materials , 1994 .
[48] Günter von Kiedrowski,et al. Minimal Replicator Theory I: Parabolic Versus Exponential Growth , 1993 .
[49] T. Ueda,et al. POLYMERIC INCLUSION COMPOUND DERIVED FROM β-CYCLODEXTRIN , 1982 .
[50] I. Sutherland. The Investigation of the Kinetics of Conformational Changes by Nuclear Magnetic Resonance Spectroscopy , 1972 .