A Self‐Complexing [2]Catenane

A supramolecular homodimer is formed in solution and in the solid state by a self-complementary [2]catenane incorporating a 1,5-dioxynaphthalene-based macrocyclic polyether interlocked with a bipyridinium-based tetracationic cyclophane (shown schematically). This unique example of self-recognition is the result of a combination of cooperative pi small middle dot small middle dot small middle dotpi and C-H small middle dot small middle dot small middle dotpi interactions.

[1]  David J. Williams,et al.  Template‐Directed Synthesis of a Rotacatenane , 1999 .

[2]  Dudley H. Williams,et al.  The Vancomycin Group of Antibiotics and the Fight against Resistant Bacteria. , 1999, Angewandte Chemie.

[3]  Dudley H. Williams,et al.  Die Vancomycin-Antibiotica und der Kampf gegen resistente Bakterien , 1999 .

[4]  J. Rebek Reversible Encapsulation and Its Consequences in Solution , 1999 .

[5]  J. Sherman,et al.  Carceplexes and Hemicarceplexes. , 1999, Chemical reviews.

[6]  H. Gibson,et al.  Formation of Supramolecular Polymers from Homoditopic Molecules Containing Secondary Ammonium Ions and Crown Ether Moieties , 1999 .

[7]  Nori Yamaguchi,et al.  BILDUNG SUPRAMOLEKULARER POLYMERE AUS HOMODITOPEN BAUSTEINEN, DIE SEKUNDARE AMMONIOGRUPPEN UND KRONENETHEREINHEITEN ENTHALTEN , 1999 .

[8]  G. Kiedrowski,et al.  Surface-promoted replication and exponential amplification of DNA analogues , 1998, Nature.

[9]  H. Gibson,et al.  Self-Organization of a Heteroditopic Molecule to Linear Polymolecular Arrays in Solution. , 1998, Angewandte Chemie.

[10]  Nori Yamaguchi,et al.  Selbstorganisation eines heteroditopen Molekls zu linearen Aggregaten in Lsung , 1998 .

[11]  Andrew J. P. White,et al.  Self-assembling supramolecular daisy chains , 1998 .

[12]  David J. Williams,et al.  Supramolekulare Gänseblümchenketten durch Selbstorganisation , 1998 .

[13]  J. Fraser Stoddart,et al.  Cyclodextrin-Based Catenanes and Rotaxanes. , 1998, Chemical reviews.

[14]  Leonard J. Barbour,et al.  An intermolecular (H2O)10 cluster in a solid-state supramolecular complex , 1998, Nature.

[15]  Andrew J. P. White,et al.  Supramolecular Daisy Chains. , 1998, Angewandte Chemie.

[16]  J. F. Stoddart,et al.  Oligocatenanes Made to Order1 , 1998 .

[17]  E. W. Meijer,et al.  Constitutionally asymmetric and chiral [2]pseudorotaxanes , 1998 .

[18]  M. Ghadiri,et al.  Autocatalytic networks: the transition from molecular self-replication to molecular ecosystems. , 1997, Current opinion in chemical biology.

[19]  R. Chapman,et al.  Templation and encapsulation in supramolecular chemistry , 1997 .

[20]  J. Atwood,et al.  A chiral spherical molecular assembly held together by 60 hydrogen bonds , 1997, Nature.

[21]  J. Rebek,et al.  Self-Assembling Capsules. , 1997, Chemical reviews.

[22]  Fritz Vögtle,et al.  A New Synthetic Strategy towards Molecules with Mechanical Bonds: Nonionic Template Synthesis of Amide-Linked Catenanes and Rotaxanes , 1997 .

[23]  Jonathan Clayden Nicht‐Biaryl‐Atropisomere: eine neue Klasse von chiralen Reagentien, Hilfsstoffen und Liganden? , 1997 .

[24]  Fritz Vögtle,et al.  EINE NEUE SYNTHESESTRATEGIE FUR MOLEKULE MIT MECHANISCHEN BINDUNGEN : NICHTIONISCHE TEMPLATSYNTHESE AMIDVERKNUPFTER CATENANE UND ROTAXANE , 1997 .

[25]  Paul H. Axelsen,et al.  Simultaneous Recognition of a Carboxylate-Containing Ligand and an Intramolecular Surrogate Ligand in the Crystal Structure of an Asymmetric Vancomycin Dimer , 1997 .

[26]  Philip A. Gale,et al.  Bindung von Anionen: Selbstorganisation von Polypyrrolmakrocyclen† , 1996 .

[27]  G. Sheldrick,et al.  Crystal structure of vancomycin. , 1996, Structure.

[28]  Philip A. Gale,et al.  Anion Binding: Self-Assembly of Polypyrrolic Macrocycles , 1996 .

[29]  G. Sheldrick,et al.  The Molecular and Crystal Structure of the Glycopeptide A‐40926 Aglycone , 1996 .

[30]  S. Kauffman Even peptides do it , 1996, Nature.

[31]  Andrew J. P. White,et al.  Cyclobis(Paraquat‐4,4′‐Biphenylene)–an Organic Molecular Square , 1996 .

[32]  Douglas Philp,et al.  SELBSTORGANISATION IN NATURLICHEN UND IN NICHTNATURLICHEN SYSTEMEN , 1996 .

[33]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[34]  A. Coleman,et al.  The crystal structure of 6I-(6-aminohexyl)amino-6I-deoxycyclomaltoheptaose. , 1996, Carbohydrate research.

[35]  Katsuyuki Ogura,et al.  Transition-metal-directed assembly of well-defined organic architectures possessing large voids: From macrocycles to [2] catenanes , 1996 .

[36]  G. Sheldrick,et al.  Structure of ureido‐balhimycin , 1995 .

[37]  E. Wintner,et al.  Studies in Molecular Replication , 1994 .

[38]  Jean-Pierre Sauvage,et al.  From Classical Chirality to Topologically Chiral Catenands and Knots , 1993 .

[39]  S. Hoffmann Artificial Replication Systems , 1992 .

[40]  Julius Rebek Molekulare Erkennung mit konkaven Modellverbindungen , 1990 .

[41]  J. Rebek Molecular Recognition with Model Systems , 1990 .

[42]  Dudley H. Williams,et al.  Aspects of molecular recognition: solvent exclusion and dimerization of the antibiotic ristocetin when bound to a model bacterial cell-wall precursor , 1989 .

[43]  Andrew J. P. White,et al.  Diazapyrenium-containing catenanes and rotaxanes , 1999 .

[44]  M. Fujita,et al.  Self-Assembly of [2]Catenanes Containing Metals in Their Backbones , 1999 .

[45]  J. F. Stoddart,et al.  Template-Directed Syntheses of Rotaxanes , 1996 .

[46]  L. Orgel Unnatural selection in chemical systems. , 1995, Accounts of chemical research.

[47]  H. Gibson,et al.  Rotaxanes, catenanes, polyrotaxanes, polycatenanes and related materials , 1994 .

[48]  Günter von Kiedrowski,et al.  Minimal Replicator Theory I: Parabolic Versus Exponential Growth , 1993 .

[49]  T. Ueda,et al.  POLYMERIC INCLUSION COMPOUND DERIVED FROM β-CYCLODEXTRIN , 1982 .

[50]  I. Sutherland The Investigation of the Kinetics of Conformational Changes by Nuclear Magnetic Resonance Spectroscopy , 1972 .