Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon.

We present measurements of relative intensity noise versus various levels of optical feedback for 1.3 μm quantum dot lasers epitaxially grown on silicon for the first time. A systematic comparison is made with heterogeneously integrated 1.55 μm quantum well lasers on silicon. Our results indicate up to 20 dB reduced sensitivity of the quantum dot lasers on silicon compared to the quantum wells.

[1]  Wen Zhou,et al.  Hyperuniform Disordered Network Polarizers , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  K. Petermann,et al.  Noise analysis of semiconductor lasers within the coherence collapse regime , 1991 .

[3]  A. Chraplyvy,et al.  Regimes of feedback effects in 1.5-µm distributed feedback lasers , 1986 .

[4]  John E. Bowers,et al.  Quantum dot lasers for silicon photonics [Invited] , 2015 .

[5]  John E. Bowers,et al.  Electrically pumped continuous wave 1.3 µm quantum dot lasers epitaxially grown on on-axis (001) Si , 2016, 2016 International Semiconductor Laser Conference (ISLC).

[6]  Zhiping Zhou,et al.  On-chip light sources for silicon photonics , 2015, Light: Science & Applications.

[7]  Karin Hinzer,et al.  Quantum dot semiconductor lasers with optical feedback , 2004 .

[8]  John E. Bowers,et al.  Energy Efficient and Energy Proportional Optical Interconnects for Multi-Core Processors: Driving the Need for On-Chip Sources , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[10]  Guillaume Huyet,et al.  Sensitivity of quantum-dot semiconductor lasers to optical feedback , 2004 .

[11]  G. Huyet,et al.  The linewidth enhancement factor alpha of quantum dot semiconductor lasers. , 2006, Optics express.

[12]  Guillaume Huyet,et al.  Feedback sensitivity of 1.3 µm InAs/GaAs quantum dot lasers , 2003 .

[13]  K. Petermann External optical feedback phenomena in semiconductor lasers , 1995 .

[14]  R. Horng,et al.  The Diagram of Feedback Regimes Revisited , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  M. Maksimov,et al.  Device characteristics of long-wavelength lasers based on self-organized quantum dots , 2012 .

[16]  K. Petermann,et al.  A simple analytic expression for the stable operation range of laser diodes with optical feedback , 1990 .

[17]  Tin Komljenovic,et al.  Frequency modulated lasers for interferometric optical gyroscopes. , 2016, Optics letters.

[18]  Shihan Sajeed,et al.  Testing Random-Detector-Efficiency Countermeasure in a Commercial System Reveals a Breakable Unrealistic Assumption , 2016, IEEE Journal of Quantum Electronics.

[19]  John E. Bowers,et al.  Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[21]  G. Fish,et al.  Widely Tunable Narrow-Linewidth Monolithically Integrated External-Cavity Semiconductor Lasers , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  Igor L. Krestnikov,et al.  Optimisation of a-factor for quantum dot InAs/GaAs fabry-perot lasers emitting at 1.3 /spl mu/m , 2007 .