An L∞-error Estimate for the h-p Version Continuous Petrov-Galerkin Method for Nonlinear Initial Value Problems

The h-p version of the continuous Petrov-Galerkin time stepping method is analyzed for nonlinear initial value problems. An L ∞ -error bound explicit with respect to the local discretization and regularity parameters is derived. Numerical examples are provided to illustrate the theoretical results.

[1]  B. Hulme One-step piecewise polynomial Galerkin methods for initial value problems , 1972 .

[2]  B. Hulme Discrete Galerkin and related one-step methods for ordinary differential equations , 1972 .

[3]  William W. Hager,et al.  Discontinuous Galerkin methods for ordinary differential equations , 1981 .

[4]  François Dubeau,et al.  Discontinuous polynomial approximations in the theory of one-step, hybrid and multistep methods for nonlinear ordinary differential equations , 1986 .

[5]  D. Estep,et al.  Global error control for the continuous Galerkin finite element method for ordinary differential equations , 1994 .

[6]  Dominik Schötzau,et al.  An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .

[7]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[8]  Thomas P. Wihler,et al.  An A Priori Error Analysis of the hp-Version of the Continuous Galerkin FEM for Nonlinear Initial Value Problems , 2005, J. Sci. Comput..

[9]  Dominik Schötzau,et al.  hp-Discontinuous Galerkin Time-Stepping for Volterra Integrodifferential Equations , 2006, SIAM J. Numer. Anal..

[10]  Ben-yu Guo,et al.  Legendre–Gauss collocation methods for ordinary differential equations , 2009, Adv. Comput. Math..

[11]  Kassem Mustapha,et al.  An hp-Version Discontinuous Galerkin Method for Integro-Differential Equations of Parabolic Type , 2011, SIAM J. Numer. Anal..

[12]  Lijun Yi,et al.  An h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}–p\documentclass[12pt]{minimal} \usepackage{amsma , 2015, Journal of Scientific Computing.