An L∞-error Estimate for the h-p Version Continuous Petrov-Galerkin Method for Nonlinear Initial Value Problems
暂无分享,去创建一个
[1] B. Hulme. One-step piecewise polynomial Galerkin methods for initial value problems , 1972 .
[2] B. Hulme. Discrete Galerkin and related one-step methods for ordinary differential equations , 1972 .
[3] William W. Hager,et al. Discontinuous Galerkin methods for ordinary differential equations , 1981 .
[4] François Dubeau,et al. Discontinuous polynomial approximations in the theory of one-step, hybrid and multistep methods for nonlinear ordinary differential equations , 1986 .
[5] D. Estep,et al. Global error control for the continuous Galerkin finite element method for ordinary differential equations , 1994 .
[6] Dominik Schötzau,et al. An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .
[7] Dominik Schötzau,et al. Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..
[8] Thomas P. Wihler,et al. An A Priori Error Analysis of the hp-Version of the Continuous Galerkin FEM for Nonlinear Initial Value Problems , 2005, J. Sci. Comput..
[9] Dominik Schötzau,et al. hp-Discontinuous Galerkin Time-Stepping for Volterra Integrodifferential Equations , 2006, SIAM J. Numer. Anal..
[10] Ben-yu Guo,et al. Legendre–Gauss collocation methods for ordinary differential equations , 2009, Adv. Comput. Math..
[11] Kassem Mustapha,et al. An hp-Version Discontinuous Galerkin Method for Integro-Differential Equations of Parabolic Type , 2011, SIAM J. Numer. Anal..
[12] Lijun Yi,et al. An h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}–p\documentclass[12pt]{minimal} \usepackage{amsma , 2015, Journal of Scientific Computing.