Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite

[1]  D. Canfield,et al.  Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur‐disproportionating bacteria , 1998 .

[2]  D. Canfield,et al.  Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. , 1997, Geochimica et cosmochimica acta.

[3]  W. Liesack,et al.  Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. , 1996, Archives of Microbiology.

[4]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[5]  D. Canfield,et al.  Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle , 1996, Nature.

[6]  Oliver J. Hao,et al.  Sulfate‐reducing bacteria , 1996 .

[7]  D. Canfield,et al.  Fate of elemental sulfur in an intertidal sediment , 1996 .

[8]  U. Fischer,et al.  Sulphite as Intermediate Sulphur Compound in Anaerobic Sulphide Oxidation to Thiosulphate by Marine Cyanobacteria , 1995 .

[9]  H. Cypionka Solute Transport and Cell Energetics , 1995 .

[10]  D. Canfield,et al.  The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. , 1994, Science.

[11]  B. Jørgensen,et al.  Thiosulfate and sulfite distributions in porewater of marine sediments related to manganese, iron, and sulfur geochemistry , 1994 .

[12]  D. Canfield,et al.  Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat , 1993, Geochimica et cosmochimica acta.

[13]  L. Elsgaard,et al.  Anoxie transformations of radiolabeled hydrogen sulfide in marine and freshwater sediments , 1992 .

[14]  F. Widdel,et al.  Gram-Negative Mesophilic Sulfate-Reducing Bacteria , 1992 .

[15]  K. Schleifer,et al.  The dissimilatory sulfate- and sulfur-reducing bacteria. , 1992 .

[16]  B. Jørgensen,et al.  Pathways and Microbiology of Thiosulfate Transformations and Sulfate Reduction in a Marine Sediment (Kattegat, Denmark) , 1991, Applied and environmental microbiology.

[17]  N. Pfennig,et al.  Microbial sulfate reduction in littoral sediment of Lake Constance , 1991 .

[18]  T. Ferdelman,et al.  Temporal and spatial variability of reduced sulfur species (FeS2, S2O32−) and porewater parameters in salt marsh sediments , 1991 .

[19]  B. Jørgensen,et al.  Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment, Kysing Fjord, Denmark , 1990 .

[20]  B. Jørgensen,et al.  A Thiosulfate Shunt in the Sulfur Cycle of Marine Sediments , 1990, Science.

[21]  K. Mopper,et al.  Determination of sulfite and thiosulfate in aqueous samples including anoxic seawater by liquid chromatography after derivatization with 2,2'-dithiobis(5-nitropyridine) , 1990 .

[22]  H. Gemerden,et al.  Oxidation of sulfide to thiosulfate by Microcoleus chtonoplastes , 1987 .

[23]  H. Cypionka,et al.  A novel type of energy metabolism involving fermentation of inorganic sulphur compounds , 1987, Nature.

[24]  J. Hayes,et al.  Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds , 1986, Journal of bacteriology.

[25]  H. Sakai,et al.  Sulfur isotope exchange reactions in the aqueous system: thiosulfate-sulfide-sulfate at hydrothermal temperature , 1985 .

[26]  J. Hayes,et al.  Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum. , 1985, FEMS microbiology letters.

[27]  Robert A. Berner,et al.  Bioturbation and the early diagenesis of carbon and sulfur , 1985 .

[28]  J. Hayes,et al.  Isotope effects associated with the anaerobic oxidation of sulfide by the purple photosynthetic bacterium, Chromatium vinosum , 1984 .

[29]  M. Goldhaber Experimental study of metastable sulfur oxyanion formation during pyrite oxidation at pH 6-9 and 30 degrees C , 1983 .

[30]  B. Jørgensen Mineralization of organic matter in the sea bed—the role of sulphate reduction , 1982, Nature.

[31]  B. Jørgensen,et al.  Seasonal dynamics of elemental sulfur in two coastal sediments , 1982 .

[32]  S. Sommer,et al.  Sedimentary iron monosulfides: Kinetics and mechanism of formation , 1981 .

[33]  J. Waterbury,et al.  Generic assignments, strain histories, and properties of pure cultures of cyanobacteria , 1979 .

[34]  Puchkova Nn,et al.  New brown chlorobacteria Prosthecochloris phaeoasteroidea nov. sp , 1976 .

[35]  L. A. Chambers,et al.  Fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans. , 1975, Canadian journal of microbiology.

[36]  C. Rees A steady-state model for sulphur isotope fractionation in bacterial reduction processes , 1973 .

[37]  Joel D. Cline,et al.  SPECTROPHOTOMETRIC DETERMINATION OF HYDROGEN SULFIDE IN NATURAL WATERS1 , 1969 .

[38]  H. Thode,et al.  The mechanism of the bacterial reduction of sulphate and of sulphite from isotope fractionation studies , 1968 .

[39]  S. Rittenberg,et al.  MICROBIOLOGICAL FRACTIONATION OF SULPHUR ISOTOPES. , 1964, Journal of general microbiology.

[40]  A. G. Harrison,et al.  Mechanism of the bacterial reduction of sulphate from isotope fractionation studies , 1958 .

[41]  A. G. Harrison,et al.  The kinetic isotope effect in the chemical reduction of sulphate , 1957 .