A compact ADI Crank–Nicolson difference scheme for the two-dimensional time fractional subdiffusion equation

ABSTRACT In this paper, a compact alternating direction implicit (ADI) Crank–Nicolson difference scheme is proposed and analysed for the solution of two-dimensional time fractional subdiffusion equation. The Riemann–Liouville time fractional derivative is approximated by the weighted and shifted Grünwald difference operator and the spatial derivative is discretized by a fourth-order compact finite difference method. The stability and convergence of the difference scheme are discussed and theoretically proven by using the energy method. Finally, numerical experiments are carried out to show that the numerical results are in good agreement with the theoretical analysis.

[1]  Zhi‐zhong Sun,et al.  Compact difference schemes for heat equation with Neumann boundary conditions (II) , 2009 .

[2]  Kassem Mustapha,et al.  Time-stepping discontinuous Galerkin methods for fractional diffusion problems , 2014, Numerische Mathematik.

[3]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[4]  Mingrong Cui,et al.  Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..

[5]  Zhibo Wang,et al.  Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation , 2013, J. Comput. Phys..

[6]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[7]  Enrico Scalas,et al.  Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .

[8]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[9]  Zhi-Zhong Sun,et al.  Error Analysis of a Compact ADI Scheme for the 2D Fractional Subdiffusion Equation , 2014, J. Sci. Comput..

[10]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[11]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[12]  Zhifeng Weng,et al.  New High-Order Compact ADI Algorithms for 3D Nonlinear Time-Fractional Convection-Diffusion Equation , 2013 .

[13]  Limei Li,et al.  Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation , 2013, J. Comput. Phys..

[14]  Shuying Zhai,et al.  A novel high-order ADI method for 3D fractionalconvection–diffusion equations ☆ ☆☆ , 2015 .

[15]  Dumitru Baleanu,et al.  A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations , 2015, J. Comput. Phys..

[16]  Zhifeng Weng,et al.  High-order compact operator splitting method for three-dimensional fractional equation with subdiffusion , 2015 .

[17]  Seakweng Vong,et al.  High order difference schemes for a time fractional differential equation with Neumann boundary conditions , 2013, 1311.5641.

[18]  Ya-Nan Zhang,et al.  Error Estimates of Crank-Nicolson-Type Difference Schemes for the Subdiffusion Equation , 2011, SIAM J. Numer. Anal..

[19]  Mostafa Abbaszadeh,et al.  Compact finite difference scheme for the solution of time fractional advection-dispersion equation , 2012, Numerical Algorithms.

[20]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[21]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[22]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[23]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[24]  Da Xu,et al.  An alternating direction implicit fractional trapezoidal rule type difference scheme for the two-dimensional fractional evolution equation , 2015, Int. J. Comput. Math..

[25]  Can Li,et al.  A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative , 2011, 1109.2345.

[26]  Changpin Li,et al.  A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions , 2016, Int. J. Comput. Math..

[27]  Leilei Wei,et al.  An Efficient Algorithm with High Accuracy for Time-Space Fractional Heat Equations , 2015 .

[28]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[29]  W. Wyss The fractional diffusion equation , 1986 .

[30]  Bryan M. Williams,et al.  A New Study of Blind Deconvolution with Implicit Incorporation of Nonnegativity Constraints , 2015 .

[31]  Cui-Cui Ji,et al.  The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation , 2015, Appl. Math. Comput..

[32]  J. Pasciak,et al.  Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion , 2013, 1307.1068.

[33]  Yinnian He,et al.  An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation , 2014, J. Comput. Phys..

[34]  Da Xu,et al.  An ADI Crank–Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation , 2014, J. Sci. Comput..

[35]  Zhi-zhong Sun,et al.  Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations , 2010 .

[36]  Zhibo Wang,et al.  A high-order ADI scheme for the two-dimensional time fractional diffusion-wave equation , 2013, Int. J. Comput. Math..