Correlation-driven topological phases in magic-angle twisted bilayer graphene

[1]  Kenji Watanabe,et al.  Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene , 2020, Nature Physics.

[2]  M. Zaletel,et al.  Flat-band topology of magic angle graphene on a transition metal dichalcogenide , 2020, Physical Review B.

[3]  Kenji Watanabe,et al.  Strongly correlated Chern insulators in magic-angle twisted bilayer graphene , 2020, Nature.

[4]  T. Taniguchi,et al.  Chern Insulators and Topological Flat-bands in Magic-angle Twisted Bilayer Graphene , 2020, 2007.03735.

[5]  Tay-Rong Chang,et al.  Quantum-limit Chern topological magnetism in TbMn6Sn6 , 2020, Nature.

[6]  Xiaodong Xu,et al.  Superconductivity in metallic twisted bilayer graphene stabilized by WSe2 , 2020, Nature.

[7]  V. Vitale,et al.  Hartree theory calculations of quasiparticle properties in twisted bilayer graphene , 2020, Electronic Structure.

[8]  Kenji Watanabe,et al.  Tuning single-electron charging and interactions between compressible Landau level islands in graphene. , 2020, Physical review. B.

[9]  Kenji Watanabe,et al.  Cascade of electronic transitions in magic-angle twisted bilayer graphene , 2019, Nature.

[10]  Y. Oreg,et al.  Cascade of phase transitions and Dirac revivals in magic-angle graphene , 2019, Nature.

[11]  T. Taniguchi,et al.  Mapping the twist-angle disorder and Landau levels in magic-angle graphene , 2019, Nature.

[12]  J. Zhu,et al.  Intrinsic quantized anomalous Hall effect in a moiré heterostructure , 2019, Science.

[13]  M. Xie,et al.  Nature of the Correlated Insulator States in Twisted Bilayer Graphene. , 2018, Physical review letters.

[14]  Kenji Watanabe,et al.  Cascade of transitions between the correlated electronic states of magic-angle twisted bilayer graphene , 2019, 1912.06145.

[15]  G. Refael,et al.  Electronic correlations in twisted bilayer graphene near the magic angle , 2019, Nature Physics.

[16]  T. Taniguchi,et al.  Maximized electron interactions at the magic angle in twisted bilayer graphene , 2018, Nature.

[17]  E. Kaxiras,et al.  Derivation of Wannier orbitals and minimal-basis tight-binding Hamiltonians for twisted bilayer graphene: First-principles approach , 2019, Physical Review Research.

[18]  Kenji Watanabe,et al.  Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene , 2019, Nature.

[19]  Kenji Watanabe,et al.  Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene , 2019, Nature.

[20]  T. Senthil,et al.  Landau level degeneracy in twisted bilayer graphene: Role of symmetry breaking , 2019, Physical Review B.

[21]  L. Balents,et al.  Landau levels in twisted bilayer graphene and semiclassical orbits , 2019, Physical Review B.

[22]  Kenji Watanabe,et al.  Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene , 2019, Nature.

[23]  N. Yuan,et al.  Designing flat bands by strain , 2019, Physical Review B.

[24]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[25]  G. Refael,et al.  Author Correction: Electronic correlations in twisted bilayer graphene near the magic angle , 2019, Nature Physics.

[26]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[27]  A. Vishwanath,et al.  Faithful tight-binding models and fragile topology of magic-angle bilayer graphene , 2018, Physical Review B.

[28]  F. Guinea,et al.  Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers , 2018, Proceedings of the National Academy of Sciences.

[29]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[30]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[31]  M. Koshino,et al.  Lattice relaxation and energy band modulation in twisted bilayer graphene , 2017, 1706.03908.

[32]  Kenji Watanabe,et al.  Evidence for a fractional fractal quantum Hall effect in graphene superlattices , 2015, Science.

[33]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[34]  F. Guinea,et al.  Cloning of Dirac fermions in graphene superlattices , 2012, Nature.

[35]  K. Shepard,et al.  Hofstadter's butterfly in moire superlattices: A fractal quantum Hall effect , 2012, 1212.4783.

[36]  P. Mallet,et al.  Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. , 2012, Physical review letters.

[37]  R. Bistritzer,et al.  Moiré butterflies in twisted bilayer graphene , 2011, 1101.2606.

[38]  D. Newell,et al.  Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots , 2010, 1011.0888.

[39]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[40]  N. Peres,et al.  Graphene bilayer with a twist: electronic structure. , 2007, Physical review letters.

[41]  H. Aoki,et al.  Topological aspects of graphene , 2007, cond-mat/0701431.

[42]  V. Gusynin,et al.  Unconventional integer quantum Hall effect in graphene. , 2005, Physical review letters.

[43]  G. Wannier A Result Not Dependent on Rationality for Bloch Electrons in a Magnetic Field , 1978 .

[44]  D. Hofstadter Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields , 1976 .