The impact of on-chip communication on memory technologies for neuromorphic systems

Emergent nanoscale non-volatile memory technologies with high integration density offer a promising solution to overcome the scalability limitations of CMOS-based neural networks architectures, by efficiently exhibiting the key principle of neural computation. Despite the potential improvements in computational costs, designing high-performance on-chip communication networks that support flexible, large-fanout connectivity remains as daunting task. In this paper, we elaborate on the communication requirements of large-scale neuromorphic designs, and point out the differences with the conventional network-on-chip architectures. We present existing approaches for on-chip neuromorphic routing networks, and discuss how new memory and integration technologies may help to alleviate the communication issues in constructing next-generation intelligent computing machines.

[1]  IEEE SSCI 2020 , 2019, IEEE Computational Intelligence Magazine.

[2]  Yuan Xie,et al.  Emerging Memory Technologies , 2019, IEEE Micro.

[3]  W. Lew,et al.  Oxide-based RRAM materials for neuromorphic computing , 2018, Journal of Materials Science.

[4]  S. H. Choday,et al.  Loihi: A Neuromorphic Manycore Processor with On-Chip Learning , 2018, IEEE Micro.

[5]  Byung-Gook Park,et al.  Analog Synaptic Behavior of a Silicon Nitride Memristor. , 2017, ACS applied materials & interfaces.

[6]  Rajit Manohar,et al.  Energy-efficient hybrid CMOS-NEMS LIF neuron circuit in 28 nm CMOS process , 2017, 2017 IEEE Symposium Series on Computational Intelligence (SSCI).

[7]  Gert Cauwenberghs,et al.  Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[8]  Alex Pappachen James,et al.  On-chip face recognition system design with memristive Hierarchical Temporal Memory , 2017, J. Intell. Fuzzy Syst..

[9]  Xiangshui Miao,et al.  Customized binary and multi-level HfO2−x-based memristors tuned by oxidation conditions , 2017, Scientific Reports.

[10]  Giacomo Indiveri,et al.  A Scalable Multicore Architecture With Heterogeneous Memory Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs) , 2017, IEEE Transactions on Biomedical Circuits and Systems.

[11]  Jun Yang,et al.  Constructing fast and energy efficient 1TnR based ReRAM crossbar memory , 2017, 2017 18th International Symposium on Quality Electronic Design (ISQED).

[12]  Bryant T. Wysocki,et al.  Stochastic CBRAM-Based Neuromorphic Time Series Prediction System , 2017, ACM J. Emerg. Technol. Comput. Syst..

[13]  Wen-Wei Shen,et al.  Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV) , 2017, Nanoscale Research Letters.

[14]  Muhammad Khalid,et al.  Memristor Crossbar-Based Pattern Recognition Circuit Using Perceptron Learning Rule , 2016, 2016 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS).

[15]  Giacomo Indiveri,et al.  Scaling mixed-signal neuromorphic processors to 28 nm FD-SOI technologies , 2016, 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[16]  Yang Yi,et al.  Electrical modeling and analysis of 3D Neuromorphic IC with Monolithic Inter-tier Vias , 2016, 2016 IEEE 25th Conference on Electrical Performance Of Electronic Packaging And Systems (EPEPS).

[17]  Emmanuelle J. Merced-Grafals,et al.  Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications , 2016, Nanotechnology.

[18]  E. Eleftheriou,et al.  All-memristive neuromorphic computing with level-tuned neurons , 2016, Nanotechnology.

[19]  Davood Shahrjerdi,et al.  A sub-1-volt analog metal oxide memristive-based synaptic device with large conductance change for energy-efficient spike-based computing systems , 2016, 1603.03979.

[20]  Fei Zhou,et al.  Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide , 2016, Scientific Reports.

[21]  Daniele Garbin,et al.  A variability study of PCM and OxRAM technologies for use as synapses in neuromorphic systems , 2015 .

[22]  Meng-Fan Chang,et al.  Low-cost and TSV-free monolithic 3D-IC with heterogeneous integration of logic, memory and sensor analogy circuitry for Internet of Things , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[23]  Miguel Acevedo,et al.  Author , 2015, Real-Time Environmental Monitoring.

[24]  Mostafa Rahimi Azghadi,et al.  Programmable Spike-Timing-Dependent Plasticity Learning Circuits in Neuromorphic VLSI Architectures , 2015, ACM J. Emerg. Technol. Comput. Syst..

[25]  Kyoobin Lee,et al.  Computationally efficient, real-time motion recognition based on bio-inspired visual and cognitive processing , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[26]  Xin Wu,et al.  3D-IC FPGA: KGD, DFT and build-in FA capabilities , 2015, 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits.

[27]  Tsu-Jae King Liu,et al.  Nanoelectromechanical Switches for Low-Power Digital Computing , 2015, Micromachines.

[28]  Le Zheng,et al.  Memristor-based synapses and neurons for neuromorphic computing , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[29]  Yintang Yang,et al.  Analysis and optimization of TSV-TSV coupling in three-dimensional integrated circuits , 2015 .

[30]  Tsu-Jae King Liu,et al.  Hybrid CMOS/BEOL-NEMS technology for ultra-low-power IC applications , 2014, 2014 IEEE International Electron Devices Meeting.

[31]  Zhen Zhou,et al.  Electrical modeling and analysis of sidewall roughness of through silicon vias in 3D integration , 2014, 2014 IEEE International Symposium on Electromagnetic Compatibility (EMC).

[32]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[33]  Tarek M. Taha,et al.  Enabling back propagation training of memristor crossbar neuromorphic processors , 2014, 2014 International Joint Conference on Neural Networks (IJCNN).

[34]  Shimeng Yu,et al.  Design considerations of synaptic device for neuromorphic computing , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[35]  Rajit Manohar,et al.  Low Power Asynchronous VLSI with NEM Relays , 2014, 2014 20th IEEE International Symposium on Asynchronous Circuits and Systems.

[36]  Rodrigo Alvarez-Icaza,et al.  Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations , 2014, Proceedings of the IEEE.

[37]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[38]  Giacomo Indiveri,et al.  An Event-Based Neural Network Architecture With an Asynchronous Programmable Synaptic Memory , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[39]  Yiran Chen,et al.  Memristor Crossbar-Based Neuromorphic Computing System: A Case Study , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[40]  Yuan Xie Emerging Memory Technologies: Design, Architecture, and Applications , 2013 .

[41]  Giacomo Indiveri,et al.  Integration of nanoscale memristor synapses in neuromorphic computing architectures , 2013, Nanotechnology.

[42]  T. Serrano-Gotarredona,et al.  STDP and STDP variations with memristors for spiking neuromorphic learning systems , 2013, Front. Neurosci..

[43]  B. DeSalvo,et al.  CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: Auditory (Cochlea) and visual (Retina) cognitive processing applications , 2012, 2012 International Electron Devices Meeting.

[44]  Daniel G. Saab,et al.  Ultra-low power NEMS FPGA , 2012, 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[45]  Jim D. Garside,et al.  SpiNNaker: A multi-core System-on-Chip for massively-parallel neural net simulation , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[46]  Chen Sun,et al.  DSENT - A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic Networks-on-Chip Modeling , 2012, 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip.

[47]  Hao Yu,et al.  A Nanoelectromechanical-Switch-Based Thermal Management for 3-D Integrated Many-Core Memory-Processor System , 2012, IEEE Transactions on Nanotechnology.

[48]  B. Chen,et al.  Multilevel resistive switching characteristics in Ag/SiO2/Pt RRAM devices , 2011, 2011 IEEE International Conference of Electron Devices and Solid-State Circuits.

[49]  Giacomo Indiveri,et al.  A VLSI network of spiking neurons with an asynchronous static random access memory , 2011, 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[50]  S. Joshi,et al.  Subthreshold MOS dynamic translinear neural and synaptic conductance , 2011, 2011 5th International IEEE/EMBS Conference on Neural Engineering.

[51]  Junho Lee,et al.  High-Frequency Scalable Electrical Model and Analysis of a Through Silicon Via (TSV) , 2011, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[52]  Luca Benini,et al.  Design Issues and Considerations for Low-Cost 3-D TSV IC Technology , 2010, IEEE Journal of Solid-State Circuits.

[53]  H.-S. Philip Wong,et al.  Nanoelectromechanical (NEM) relays integrated with CMOS SRAM for improved stability and low leakage , 2009, 2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers.

[54]  A. Ayatollahi,et al.  Implementation of biologically plausible spiking neural network models on the memristor crossbar-based CMOS/nano circuits , 2009, 2009 European Conference on Circuit Theory and Design.

[55]  Manuel Rivas Pérez,et al.  CAVIAR: A 45k Neuron, 5M Synapse, 12G Connects/s AER Hardware Sensory–Processing– Learning–Actuating System for High-Speed Visual Object Recognition and Tracking , 2009, IEEE Transactions on Neural Networks.

[56]  Masayuki Nakajima,et al.  A Chip-Stacked Memory for On-Chip SRAM-Rich SoCs and Processors , 2009, IEEE Journal of Solid-State Circuits.

[57]  Niraj K. Jha,et al.  GARNET: A detailed on-chip network model inside a full-system simulator , 2009, 2009 IEEE International Symposium on Performance Analysis of Systems and Software.

[58]  D. Markovic,et al.  Integrated circuit design with NEM relays , 2008, 2008 IEEE/ACM International Conference on Computer-Aided Design.

[59]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[60]  Weixuan Yang,et al.  Design and Analysis of Nanotube-Based Memory Cells , 2008, Nanoscale Research Letters.

[61]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[62]  X. Baillin,et al.  Through silicon vias technology for CMOS image sensors packaging , 2008, 2008 58th Electronic Components and Technology Conference.

[63]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[64]  Yu Zhou,et al.  Low power FPGA design using hybrid CMOS-NEMS approach , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[65]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[66]  S. Hestrin,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2001, Science.

[67]  M. Hines,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[68]  Charles A. Micchelli,et al.  How to Choose an Activation Function , 1993, NIPS.

[69]  Misha Mahowald,et al.  A silicon model of early visual processing , 1993, Neural Networks.

[70]  R. Douglas,et al.  A silicon neuron , 1991, Nature.

[71]  Carver A. Mead,et al.  Scanners for visualizing activity of analog VLSI circuitry , 1991 .

[72]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[73]  Richard F. Lyon,et al.  An analog electronic cochlea , 1988, IEEE Trans. Acoust. Speech Signal Process..

[74]  L. Chua Memristor-The missing circuit element , 1971 .

[75]  Daewon Kim,et al.  Triboelectrification driven fin-fact (flip-flop actuated channel transistor) for security application , 2017, 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS).

[76]  Elisa Vianello,et al.  Binary OxRAM/CBRAM Memories for Efficient Implementations of Embedded Neuromorphic Circuits , 2017 .

[77]  Gabriel H. Loh,et al.  Design and Analysis of 3D-MAPS (3D Massively Parallel Processor with Stacked Memory) , 2015, IEEE Transactions on Computers.

[78]  Romain Brette,et al.  Brian Spiking Neural Network Simulator , 2014, Encyclopedia of Computational Neuroscience.

[79]  Paresh Limaye,et al.  Design issues and considerations for low-cost 3D TSV IC technology , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[80]  Masayuki Nakajima,et al.  A chip-stacked memory for on-chip SRAM-rich SoCs and processors , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[81]  Diana Marculescu,et al.  ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED) , 2008, ISLPED 2008.

[82]  William J. Dally,et al.  Principles and Practices of Interconnection Networks , 2004 .

[83]  Özgür Türel,et al.  CrossNets: possible neuromorphic networks based on nanoscale components , 2003, Int. J. Circuit Theory Appl..

[84]  Tobi Delbrück,et al.  Silicon retina with correlation-based, velocity-tuned pixels , 1993, IEEE Trans. Neural Networks.

[85]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[86]  David Renshaw,et al.  IEEE International Symposium on Circuits and Systems (ISCAS) , 1990 .

[87]  Tobi Delbrück,et al.  An analog VLSI implementation of the marr-poggio stereo correspondence algorithm , 1988, Neural Networks.

[88]  Heinke,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2022 .

[89]  Andrew P. Davison,et al.  Neuroinformatics Original Research Article Pynn: a Common Interface for Neuronal Network Simulators , 2022 .

[90]  Romain Brette,et al.  Neuroinformatics Original Research Article Brian: a Simulator for Spiking Neural Networks in Python , 2022 .