Liver cancer oncogenomics: opportunities and dilemmas for clinical applications.

Primary liver cancers are among the most rapidly evolving malignant tumors worldwide. An underlying chronic inflammatory liver disease, which precedes liver cancer development for several decades and frequently creates a pro-oncogenic microenvironment, impairs progress in therapeutic approaches. Molecular heterogeneity of liver cancer is potentiated by a crosstalk between epithelial tumor and stromal cells that complicate translational efforts to unravel molecular mechanisms of hepatocarcinogenesis with a drugable intend. Next-generation sequencing has greatly advanced our understanding of cancer development. With regards to liver cancer, the unprecedented coverage of next-generation sequencing has created a detailed map of genetic alterations and identified key somatic changes such as CTNNB1 and TP53 as well as several previously unrecognized recurrent disease-causing alterations that could contribute to new therapeutic approaches. Importantly, these investigations indicate that a classical oncogene addiction cannot be assumed for primary liver cancer. Therefore, hepatocarcinogenesis can be considered a paradigm suitable for individualized medicine.

[1]  P. Galle,et al.  HCC therapies—lessons learned , 2014, Nature Reviews Gastroenterology &Hepatology.

[2]  T. Pawlik,et al.  Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. , 2014, Journal of hepatology.

[3]  D. Mann Epigenetics in liver disease , 2014, Hepatology.

[4]  Xianghuo He,et al.  Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients. , 2014, Gastroenterology.

[5]  Jens U. Marquardt,et al.  Next-generation genomic profiling of hepatocellular adenomas: a new era of individualized patient care. , 2014, Cancer cell.

[6]  Jessica Zucman-Rossi,et al.  Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation. , 2014, Cancer cell.

[7]  Y. Totoki,et al.  Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma , 2014, Hepatology.

[8]  K. Offit,et al.  Cancer genomics and inherited risk. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  David M. Jones,et al.  New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. , 2014, The oncologist.

[10]  Eric W. Klee,et al.  Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma , 2014, PLoS genetics.

[11]  S. Thorgeirsson,et al.  Sequential transcriptome analysis of human liver cancer indicates late stage acquisition of malignant traits. , 2014, Journal of hepatology.

[12]  Swe Swe Myint,et al.  Exome sequencing identifies distinct mutational patterns in liver fluke–related and non-infection-related bile duct cancers , 2013, Nature Genetics.

[13]  T. Pawlik,et al.  Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas , 2013, Nature Genetics.

[14]  J. Llovet,et al.  Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies , 2013, Oncogene.

[15]  L. Jeng,et al.  Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  Lin Li,et al.  Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma , 2013, Genome research.

[17]  J. Calderaro,et al.  High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions , 2013, Nature Communications.

[18]  S. Thorgeirsson,et al.  Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. , 2013, Gastroenterology.

[19]  S. Thorgeirsson,et al.  Linking MLL and the HGF-MET signaling pathway in liver cancer. , 2013, The Journal of clinical investigation.

[20]  Kol Jia Yong,et al.  A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma , 2013, Gut.

[21]  Jeanette J McCarthy,et al.  Genomic Medicine: A Decade of Successes, Challenges, and Opportunities , 2013, Science Translational Medicine.

[22]  Nickolay A. Khazanov,et al.  Identification of targetable FGFR gene fusions in diverse cancers. , 2013, Cancer discovery.

[23]  Jessica Zucman-Rossi,et al.  Hepatocellular benign tumors-from molecular classification to personalized clinical care. , 2013, Gastroenterology.

[24]  Derek Y. Chiang,et al.  Identification of driver genes in hepatocellular carcinoma by exome sequencing , 2013, Hepatology.

[25]  Rameen Beroukhim,et al.  Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. , 2013, Gastroenterology.

[26]  S. Thorgeirsson,et al.  Genomic decoding of intrahepatic cholangiocarcinoma reveals therapeutic opportunities. , 2013, Gastroenterology.

[27]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[28]  P. Galle,et al.  Next generation sequencing of HCC from European and Asian HCC cohorts. Back to p53 and Wnt/β-catenin. , 2013, Journal of hepatology.

[29]  S. Friedman,et al.  Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. , 2013, Gastroenterology.

[30]  S. Giordano,et al.  MicroRNAs: New tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? , 2013, Hepatology.

[31]  Leilei Chen,et al.  Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma , 2013, Nature Medicine.

[32]  Bernadette A. Thomas,et al.  Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010 , 2012, The Lancet.

[33]  Olaf Neumann,et al.  Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors , 2012, Hepatology.

[34]  J. Llovet,et al.  Next-generation sequencing: path for driver discovery in hepatocellular carcinoma. , 2012, Gastroenterology.

[35]  Hyun Goo Woo,et al.  Transcriptomic profiling reveals hepatic stem‐like gene signatures and interplay of miR‐200c and epithelial‐mesenchymal transition in intrahepatic cholangiocarcinoma , 2012, Hepatology.

[36]  Boping Zhou,et al.  Exome sequencing of hepatitis B virus–associated hepatocellular carcinoma , 2012, Nature Genetics.

[37]  H. Thomas,et al.  Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update , 2012, Gut.

[38]  A. Zhu Molecularly targeted therapy for advanced hepatocellular carcinoma in 2012: current status and future perspectives. , 2012, Seminars in oncology.

[39]  P. Sarnow,et al.  MicroRNA silencing and the development of novel therapies for liver disease. , 2012, Journal of hepatology.

[40]  Derek Y. Chiang,et al.  Mutations in Isocitrate Dehydrogenase 1 and 2 Occur Frequently in Intrahepatic Cholangiocarcinomas and Share Hypermethylation Targets with Glioblastomas , 2012, Oncogene.

[41]  Young Bae Kim,et al.  A fibrous stromal component in hepatocellular carcinoma reveals a cholangiocarcinoma‐like gene expression trait and epithelial‐mesenchymal transition , 2012, Hepatology.

[42]  X. Wang,et al.  MicroRNAs in liver disease. , 2012, Gastroenterology.

[43]  Keith A. Boroevich,et al.  Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators , 2012, Nature Genetics.

[44]  Angela M. Liu,et al.  Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma , 2012, Nature Genetics.

[45]  Bin Tean Teh,et al.  Exome sequencing of liver fluke–associated cholangiocarcinoma , 2012, Nature Genetics.

[46]  S. Imbeaud,et al.  Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma , 2012, Nature Genetics.

[47]  S. Thorgeirsson,et al.  Genetic profiling of intrahepatic cholangiocarcinoma , 2012, Current opinion in gastroenterology.

[48]  Itzhak Avital,et al.  Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. , 2012, Gastroenterology.

[49]  A. Zhu,et al.  Targeting Fibroblast Growth Factor Receptor Signaling in Hepatocellular Carcinoma , 2012, Oncology.

[50]  M. Cáccamo,et al.  A Viral Discovery Methodology for Clinical Biopsy Samples Utilising Massively Parallel Next Generation Sequencing , 2011, PloS one.

[51]  M. Elkind Epidemiology and Risk Factors , 2011, Continuum.

[52]  C. Brennan,et al.  Genomic dissection of the epidermal growth factor receptor (EGFR)/PI3K pathway reveals frequent deletion of the EGFR phosphatase PTPRS in head and neck cancers , 2011, Proceedings of the National Academy of Sciences.

[53]  Fan Mo,et al.  RNA-Seq Analyses Generate Comprehensive Transcriptomic Landscape and Reveal Complex Transcript Patterns in Hepatocellular Carcinoma , 2011, PloS one.

[54]  Michael A Choti,et al.  Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma , 2011, Nature Genetics.

[55]  Rowena A. Bull,et al.  Sequential Bottlenecks Drive Viral Evolution in Early Acute Hepatitis C Virus Infection , 2011, PLoS pathogens.

[56]  M. Manns,et al.  Epidemiological trends in incidence and mortality of hepatobiliary cancers in Germany , 2011, Scandinavian journal of gastroenterology.

[57]  G. Carpino,et al.  Cholangiocarcinoma: Epidemiology and risk factors , 2011 .

[58]  M. Grever,et al.  Multi-institutional phase II study of selumetinib in patients with metastatic biliary cancers. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[59]  Hidenori Ojima,et al.  High-resolution characterization of a hepatocellular carcinoma genome , 2011, Nature Genetics.

[60]  Yusuke Nakamura,et al.  Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma , 2011, Nature Genetics.

[61]  Li Lin,et al.  Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. , 2011, Cancer cell.

[62]  Michael R Stratton,et al.  Genomics and the continuum of cancer care. , 2011, The New England journal of medicine.

[63]  Marcin Krawczyk,et al.  Genome-wide association studies and genetic risk assessment of liver diseases , 2010, Nature Reviews Gastroenterology &Hepatology.

[64]  X. Wang,et al.  The clinical potential of microRNAs , 2010, Journal of hematology & oncology.

[65]  S. Gabriel,et al.  Advances in understanding cancer genomes through second-generation sequencing , 2010, Nature Reviews Genetics.

[66]  C. Croce,et al.  MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. , 2010, Cancer research.

[67]  Jung-Hwan Yoon,et al.  Identification of a cholangiocarcinoma-like gene expression trait in hepatocellular carcinoma. , 2010, Cancer research.

[68]  D. Cunningham,et al.  Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. , 2010, The New England journal of medicine.

[69]  J. Llovet,et al.  Molecular classification and novel targets in hepatocellular carcinoma: recent advancements. , 2010, Seminars in liver disease.

[70]  S. Lowe,et al.  miR-221 overexpression contributes to liver tumorigenesis , 2009, Proceedings of the National Academy of Sciences.

[71]  Hansjuerg Alder,et al.  miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. , 2009, Cancer cell.

[72]  S. Thorgeirsson,et al.  Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties , 2009, Oncogene.

[73]  J. Everhart,et al.  Burden of digestive diseases in the United States Part III: Liver, biliary tract, and pancreas. , 2009, Gastroenterology.

[74]  S. Thorgeirsson,et al.  Central role of c-Myc during malignant conversion in human hepatocarcinogenesis. , 2009, Cancer research.

[75]  Michiie Sakamoto,et al.  Pathologic diagnosis of early hepatocellular carcinoma: A report of the international consensus group for hepatocellular neoplasia , 2009, Hepatology.

[76]  Andrea Ventura,et al.  MicroRNAs and Cancer: Short RNAs Go a Long Way , 2009, Cell.

[77]  S. Paggi,et al.  Sorafenib in Advanced Hepatocellular Carcinoma , 2008 .

[78]  Laura Pelletier,et al.  MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations , 2008, Hepatology.

[79]  S. Thorgeirsson,et al.  Hepatocyte-specific c-Met Deletion Disrupts Redox Homeostasis and Sensitizes to Fas-mediated Apoptosis* , 2008, Journal of Biological Chemistry.

[80]  A. Feinberg Phenotypic plasticity and the epigenetics of human disease , 2007, Nature.

[81]  Ronald A. DePinho,et al.  Hepatocellular carcinoma pathogenesis: from genes to environment , 2006, Nature Reviews Cancer.

[82]  Ajamete Kaykas,et al.  WNT and β-catenin signalling: diseases and therapies , 2004, Nature Reviews Genetics.

[83]  J. Zucman‐Rossi,et al.  Clinical and molecular analysis of combined hepatocellular-cholangiocarcinomas. , 2004, Journal of hepatology.

[84]  J. Bruix,et al.  Focus on hepatocellular carcinoma. , 2004, Cancer cell.

[85]  A. Feinberg,et al.  The history of cancer epigenetics , 2004, Nature Reviews Cancer.

[86]  S. Thorgeirsson,et al.  Molecular pathogenesis of human hepatocellular carcinoma , 2002, Nature Genetics.

[87]  T. Patel Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States , 2001, Hepatology.

[88]  P. Hainaut,et al.  Patterns of p53 G-->T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. , 2001, Carcinogenesis.

[89]  Y. Tokusashi,et al.  Genetic classification of combined hepatocellular-cholangiocarcinoma. , 2000, Human pathology.

[90]  S. Thorgeirsson,et al.  A perspective on molecular therapy in cholangiocarcinoma: present status and future directions. , 2014, Hepatic oncology.

[91]  J. Zucman‐Rossi,et al.  Genetics of hepatocellular carcinoma: the next generation. , 2014, Journal of hepatology.

[92]  N. Chavez-Tapia,et al.  Clinical practice guidelines: Management of Hepatocellular Carcinoma , 2014 .

[93]  G. Gores,et al.  Classification, diagnosis, and management of cholangiocarcinoma. , 2013, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[94]  A. Gasbarrini,et al.  Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. , 2013, The Lancet. Oncology.

[95]  P. Galle,et al.  Molecular diagnosis and therapy of hepatocellular carcinoma (HCC): an emerging field for advanced technologies. , 2012, Journal of hepatology.

[96]  최진섭,et al.  A fibrous stromal component in hepatocellular carcinoma reveals a cholangiocarcinoma-like gene expression trait and epithelial-mesenchymal transition. , 2012 .

[97]  F. H. Garrison The history of cancer. , 2012, Bulletin of the New York Academy of Medicine.

[98]  S. H. Lee,et al.  Mutational analysis of JAK1 gene in human hepatocellular carcinoma. , 2009, Neoplasma.

[99]  Randall T Moon,et al.  WNT and beta-catenin signalling: diseases and therapies. , 2004, Nature reviews. Genetics.

[100]  D. Woodfield Hepatocellular carcinoma. , 1986, The New Zealand medical journal.