A registration method for model order reduction: data compression and geometry reduction

We propose a general --- i.e., independent of the underlying equation --- registration method for parameterized Model Order Reduction. Given the spatial domain $\Omega \subset \mathbb{R}^d$ and a set of snapshots $\{ u^k \}_{k=1}^{n_{\rm train}}$ over $\Omega$ associated with $n_{\rm train}$ values of the model parameters $\mu^1,\ldots, \mu^{n_{\rm train}} \in \mathcal{P}$, the algorithm returns a parameter-dependent bijective mapping $\boldsymbol{\Phi}: \Omega \times \mathcal{P} \to \mathbb{R}^d$: the mapping is designed to make the mapped manifold $\{ u_{\mu} \circ \boldsymbol{\Phi}_{\mu}: \, \mu \in \mathcal{P} \}$ more suited for linear compression methods. We apply the registration procedure, in combination with a linear compression method, to devise low-dimensional representations of solution manifolds with slowly-decaying Kolmogorov $N$-widths; we also consider the application to problems in parameterized geometries. We present a theoretical result to show the mathematical rigor of the registration procedure. We further present numerical results for several two-dimensional problems, to empirically demonstrate the effectivity of our proposal.

[1]  J. Marsden,et al.  Reconstruction equations and the Karhunen—Loéve expansion for systems with symmetry , 2000 .

[2]  Nirmal J. Nair,et al.  Transported snapshot model order reduction approach for parametric, steady‐state fluid flows containing parameter‐dependent shocks , 2018, International Journal for Numerical Methods in Engineering.

[3]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[4]  Wolfgang Dahmen,et al.  Adaptive Petrov-Galerkin Methods for First Order Transport Equations , 2011, SIAM J. Numer. Anal..

[5]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[6]  Kookjin Lee,et al.  Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders , 2018, J. Comput. Phys..

[7]  Bernard Haasdonk,et al.  Convergence Rates of the POD–Greedy Method , 2013 .

[8]  Robert Lipton,et al.  Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..

[9]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[10]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[11]  Anthony T. Patera,et al.  A parameterized‐background data‐weak approach to variational data assimilation: formulation, analysis, and application to acoustics , 2015 .

[12]  Gianluigi Rozza,et al.  A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks , 2012 .

[13]  Mario Ohlberger,et al.  Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing , 2013 .

[14]  Kevin T. Carlberg,et al.  Online adaptive basis refinement and compression for reduced-order models , 2019, Computer Methods in Applied Mechanics and Engineering.

[15]  Themistoklis P. Sapsis,et al.  Model Order Reduction for Stochastic Dynamical Systems with Continuous Symmetries , 2017, SIAM J. Sci. Comput..

[16]  H. Bijl,et al.  Mesh deformation based on radial basis function interpolation , 2007 .

[17]  R. Panton Incompressible Flow: Panton/Incompressible Flow 4E , 2013 .

[18]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[19]  S. Volkwein,et al.  MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .

[20]  Anthony T. Patera,et al.  A component-based hybrid reduced basis/finite element method for solid mechanics with local nonlinearities , 2018 .

[21]  Karsten Urban,et al.  (Parametrized) First Order Transport Equations: Realization of Optimally Stable Petrov-Galerkin Methods , 2018, SIAM J. Sci. Comput..

[22]  A. Quarteroni,et al.  Reduced Basis Methods for Partial Differential Equations: An Introduction , 2015 .

[23]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[24]  Benjamin Peherstorfer Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling , 2020, SIAM J. Sci. Comput..

[25]  Per-Olof Persson,et al.  An Optimization Based Discontinuous Galerkin Approach for High-Order Accurate Shock Tracking , 2018 .

[26]  Benjamin Peherstorfer,et al.  Geometric Subspace Updates with Applications to Online Adaptive Nonlinear Model Reduction , 2018, SIAM J. Matrix Anal. Appl..

[27]  Albert Cohen,et al.  Approximation of high-dimensional parametric PDEs * , 2015, Acta Numerica.

[28]  George Roussos,et al.  Rapid evaluation of radial basis functions , 2005 .

[29]  Albert Cohen,et al.  Kolmogorov widths under holomorphic mappings , 2015, ArXiv.

[30]  Per-Olof Persson,et al.  Nonlinear Elasticity for Mesh Deformation with High-Order Discontinuous Galerkin Methods for the Navier-Stokes Equations on Deforming Domains , 2015 .

[31]  Lorenzo Rosasco,et al.  Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review , 2016, International Journal of Automation and Computing.

[32]  Andrea Ferrero,et al.  A zonal Galerkin-free POD model for incompressible flows , 2018, J. Comput. Phys..

[33]  Angelo Iollo,et al.  Advection modes by optimal mass transfer. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Yvon Maday,et al.  A reduced basis element method for the steady stokes problem , 2006 .

[35]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[36]  Volker Mehrmann,et al.  The Shifted Proper Orthogonal Decomposition: A Mode Decomposition for Multiple Transport Phenomena , 2015, SIAM J. Sci. Comput..

[37]  C. Villani Optimal Transport: Old and New , 2008 .

[38]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[39]  Maciej Balajewicz,et al.  Arbitrary Lagrangian Eulerian framework for efficient projection-based reduction of convection dominated nonlinear flows , 2017 .

[40]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[41]  Anthony T. Patera,et al.  Approximation of Parametric Derivatives by the Empirical Interpolation Method , 2013, Found. Comput. Math..

[42]  Andrea Manzoni,et al.  Efficient Reduction of PDEs Defined on Domains with Variable Shape , 2017 .

[43]  Mario Ohlberger,et al.  Reduced Basis Methods: Success, Limitations and Future Challenges , 2015, 1511.02021.

[44]  Per-Olof Persson,et al.  An optimization-based approach for high-order accurate discretization of conservation laws with discontinuous solutions , 2017, J. Comput. Phys..

[45]  Benjamin Stamm,et al.  Model Order Reduction for Problems with Large Convection Effects , 2018, Computational Methods in Applied Sciences.

[46]  Harold R. Parks,et al.  The Implicit Function Theorem , 2002 .

[47]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[48]  Yalchin Efendiev,et al.  Online Adaptive Local-Global Model Reduction for Flows in Heterogeneous Porous Media , 2016, Comput..

[49]  Mario Ohlberger,et al.  Error Control for the Localized Reduced Basis Multiscale Method with Adaptive On-Line Enrichment , 2015, SIAM J. Sci. Comput..

[50]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[51]  Tommaso Taddei,et al.  An offline/online procedure for dual norm calculations of parameterized functionals: empirical quadrature and empirical test spaces , 2018, Advances in Computational Mathematics.

[52]  Benjamin Peherstorfer,et al.  Stability of Discrete Empirical Interpolation and Gappy Proper Orthogonal Decomposition with Randomized and Deterministic Sampling Points , 2020, SIAM J. Sci. Comput..

[53]  Benjamin Peherstorfer,et al.  Stabilizing discrete empirical interpolation via randomized and deterministic oversampling , 2018, 1808.10473.

[54]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[55]  Kenji Kashima,et al.  Nonlinear model reduction by deep autoencoder of noise response data , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[56]  T. Taddei An Adaptive Parametrized-Background Data-Weak Approach to Variational Data Assimilation , 2017 .

[57]  A. Quarteroni,et al.  Reduced Basis Techniques For Nonlinear Conservation Laws , 2015 .

[58]  Kyle T. Mandli,et al.  Model reduction of a parametrized scalar hyperbolic conservation law using displacement interpolation , 2018, 1805.05938.

[59]  Jaime Peraire,et al.  Discontinuous Galerkin Solution of the Navier-Stokes Equations on Deformable Domains , 2007 .

[60]  Bert Mendelson Introduction to Topology , 1975 .

[61]  Gerrit Welper,et al.  Interpolation of Functions with Parameter Dependent Jumps by Transformed Snapshots , 2017, SIAM J. Sci. Comput..

[62]  David Amsallem,et al.  Efficient model reduction of parametrized systems by matrix discrete empirical interpolation , 2015, J. Comput. Phys..

[63]  Kevin Carlberg,et al.  Adaptive h‐refinement for reduced‐order models , 2014, ArXiv.

[64]  Holger Wendland,et al.  Fast evaluation of radial basis functions : methods based on partition of unity , 2002 .

[65]  A. Quarteroni,et al.  Model reduction techniques for fast blood flow simulation in parametrized geometries , 2012, International journal for numerical methods in biomedical engineering.

[66]  Timo Tonn Reduced-basis method (RBM) for non-affine elliptic parametrized PDEs - (motivated by optimization in hydromechanics) , 2012 .