Radiothérapie guidée par la tomographie conique (cone beam computed tomography) : mise en œuvre et applications cliniques

The kV cone beam CT (CBCT) consists of an X-ray tube and a flat panel detector placed perpendicularly to the treatment beam, allowing the acquisition of hundreds of projections in one rotation of the gantry about the patient. Available in all new linear accelerators, the CBCT provides volumetric imaging in treatment position proving the realization of image- and dose-guided radiotherapy (IGRT and DGRT). The clinical indications correspond to mobile tumours irradiating with high precision required techniques, such as stereotactic, hypofractionated or high dose radiotherapy. The clinical experience is still very limited and concerns mainly prostate, head and neck and lung tumours. The registration and treatment protocols are briefly described. Quality control and training are major issues. CBCT based IGRT is a new technique which needs to be optimized. However, it should provide significant clinical benefit in combination with intensity modulated radiotherapy and new imaging modalities for target delineation.

[1]  Jan-Jakob Sonke,et al.  Setup uncertainties of anatomical sub-regions in head-and-neck cancer patients after offline CBCT guidance. , 2009, International journal of radiation oncology, biology, physics.

[2]  Feng Xu,et al.  The clinical feasibility and effect of online cone beam computer tomography-guided intensity-modulated radiotherapy for nasopharyngeal cancer. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[3]  C. Rowbottom,et al.  Accuracy and precision of an IGRT solution. , 2009, Medical dosimetry : official journal of the American Association of Medical Dosimetrists.

[4]  Ping Li,et al.  Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable Stage I/II non-small-cell lung cancer. , 2006, International journal of radiation oncology, biology, physics.

[5]  Marcel van Herk,et al.  Different styles of image-guided radiotherapy. , 2007 .

[6]  Matthias Guckenberger,et al.  Cone-beam CT based image-guidance for extracranial stereotactic radiotherapy of intrapulmonary tumors , 2006, Acta oncologica.

[7]  Mark Oldham,et al.  Cone-beam-CT guided radiation therapy: A model for on-line application. , 2005, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[8]  Patrick A Kupelian,et al.  Initial experience with megavoltage (MV) CT guidance for daily prostate alignments. , 2005, International journal of radiation oncology, biology, physics.

[9]  David A Jaffray,et al.  Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. , 2006, Medical physics.

[10]  D. Hallahan,et al.  A study on adaptive IMRT treatment planning using kV cone-beam CT. , 2007, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[11]  Wilfred Sewchand,et al.  Marker seed migration in prostate localization. , 2002, International journal of radiation oncology, biology, physics.

[12]  Joe Y. Chang,et al.  Stereotactic body radiation therapy in centrally and superiorly located stage I or isolated recurrent non-small-cell lung cancer. , 2008, International journal of radiation oncology, biology, physics.

[13]  Radhe Mohan,et al.  Multiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy. , 2006, International journal of radiation oncology, biology, physics.

[14]  D Verellen,et al.  An overview of volumetric imaging technologies and their quality assurance for IGRT , 2008, Acta oncologica.

[15]  Radhe Mohan,et al.  Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. , 2005, International journal of radiation oncology, biology, physics.

[16]  Matthias Guckenberger,et al.  Investigation of the usability of conebeam CT data sets for dose calculation , 2008, Radiation oncology.

[17]  Olivier Morin,et al.  Mégavoltage cone-beam CT : récents développements et applications cliniques pour la radiothérapie conformationnelle avec modulation d'intensité , 2006 .

[18]  B. Heijmen,et al.  Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[19]  Patrick A Kupelian,et al.  A technique for adaptive image-guided helical tomotherapy for lung cancer. , 2006, International journal of radiation oncology, biology, physics.

[20]  M. Hiraoka,et al.  Comparison of three radiotherapy treatment planning protocols of definitive external-beam radiation for localized prostate cancer , 2005, International Journal of Clinical Oncology.

[21]  R. Crevoisier,et al.  Image-guided Radiation Therapy (IGRT) in Prostate Cancer: Preliminary Results in Prostate Registration and Acute Toxicity of a Randomized Study , 2009 .

[22]  Patrick A Kupelian,et al.  Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability. , 2005, International journal of radiation oncology, biology, physics.

[23]  Tom W J Scheenen,et al.  IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. , 2006, International journal of radiation oncology, biology, physics.

[24]  Intra- and inter-radiation therapist reproducibility of daily isocenter verification using prostatic fiducial markers , 2006, Radiation oncology.

[25]  William Y Song,et al.  Evaluation of image-guided radiation therapy (IGRT) technologies and their impact on the outcomes of hypofractionated prostate cancer treatments: a radiobiologic analysis. , 2006, International journal of radiation oncology, biology, physics.

[26]  C. Ling,et al.  The effect of significant tumor reduction on the dose distribution in intensity modulated radiation therapy for head-and-neck cancer: a case study. , 2009, Medical dosimetry : official journal of the American Association of Medical Dosimetrists.

[27]  A. Lisbona,et al.  Les doses dues à l’imagerie numérique pour le contrôle de positionnement du patient en radiothérapie : comment les prendre en compte ? , 2008 .

[28]  M. Macpherson,et al.  Calcifications are potential surrogates for prostate localization in image-guided radiotherapy. , 2008, International journal of radiation oncology, biology, physics.

[29]  Lei Dong,et al.  Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. , 2008, International journal of radiation oncology, biology, physics.

[30]  Bruno Sorcini,et al.  Clinical application of image-guided radiotherapy, IGRT (on the Varian OBI platform). , 2006, Cancer radiotherapie : journal de la Societe francaise de radiotherapie oncologique.

[31]  Caroline Lafond,et al.  Radiothérapie guidée par l’image , 2007 .

[32]  Jeng-Fong Chiou,et al.  Effect of Regression of Enlarged Neck Lymph Nodes on Radiation Doses Received by Parotid Glands During Intensity-Modulated Radiotherapy for Head and Neck Cancer , 2006, American journal of clinical oncology.

[33]  Caroline Lafond,et al.  [Quantification of the volumetric benefit of image-guided radiotherapy (IGRT) in prostate cancer: margins and presence probability map]. , 2009, Cancer radiotherapie : journal de la Societe francaise de radiotherapie oncologique.

[34]  Patrick A Kupelian,et al.  Evaluation of image-guidance protocols in the treatment of head and neck cancers. , 2007, International journal of radiation oncology, biology, physics.

[35]  L. Claude,et al.  [Image guided radiotherapy with the Cone Beam CT kV (Elekta): experience of the Léon Bérard centre]. , 2009, Cancer radiotherapie : journal de la Societe francaise de radiotherapie oncologique.

[36]  Geoffrey D Hugo,et al.  Dosimetric advantages of four-dimensional adaptive image-guided radiotherapy for lung tumors using online cone-beam computed tomography. , 2008, International journal of radiation oncology, biology, physics.

[37]  J. Montie,et al.  Functional anatomy of the prostate: implications for treatment planning. , 2005, International journal of radiation oncology, biology, physics.

[38]  J. Lagrange,et al.  Radiothérapie des cancers de la prostate : évaluation in vivo de la dose délivrée par tomographie conique de basse énergie (kV) , 2009 .

[39]  Geoffrey Hugo,et al.  Image-guided radiotherapy via daily online cone-beam CT substantially reduces margin requirements for stereotactic lung radiotherapy. , 2007, International journal of radiation oncology, biology, physics.

[40]  Jan-Jakob Sonke,et al.  Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy. , 2005, International journal of radiation oncology, biology, physics.

[41]  G Malandain,et al.  A phantom study of the accuracy of CT, MR and PET image registrations with a block matching-based algorithm. , 2008, Cancer radiotherapie : journal de la Societe francaise de radiotherapie oncologique.

[42]  Eduard Schreibmann,et al.  Automated Quality Assurance for Image‐Guided Radiation Therapy , 2009, Journal of applied clinical medical physics.

[43]  J. Galvin,et al.  A cone beam CT-Based Study for Clinical Target Definition Using Pelvic Anatomy During Postprostatectomy Radiotherapy. , 2008, International journal of radiation oncology, biology, physics.

[44]  Ping Xia,et al.  Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. , 2006, International journal of radiation oncology, biology, physics.

[45]  M. V. van Herk,et al.  The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. , 2000, International journal of radiation oncology, biology, physics.

[46]  R. Valicenti,et al.  Technique of outpatient placement of intraprostatic fiducial markers before external beam radiotherapy. , 2009, Urology.

[47]  Joos V Lebesque,et al.  Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[48]  S. Sim,et al.  Dose comparison of megavoltage cone‐beam and orthogonal‐pair portal images , 2007, Journal of applied clinical medical physics.

[49]  J. Fowler,et al.  Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. , 2007, International journal of radiation oncology, biology, physics.

[50]  Hui Yan,et al.  Evaluation of three types of reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS). , 2007, Medical physics.

[51]  B. Movsas,et al.  Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer , 2007, Physics in medicine and biology.

[52]  Radhe Mohan,et al.  Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. , 2004, International journal of radiation oncology, biology, physics.

[53]  M. Hoogeman,et al.  Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 GY versus 78 Gy. , 2007, International journal of radiation oncology, biology, physics.

[54]  Dirk Verellen,et al.  A (short) history of image-guided radiotherapy. , 2008, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[55]  J. Purdy,et al.  Evolution of computerized radiotherapy in radiation oncology: potential problems and solutions. , 2008, International journal of radiation oncology, biology, physics.

[56]  M. Oldham,et al.  Cone-beam-CT guided radiation therapy: technical implementation. , 2005, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.