Acetic acid conversion to ketene on Cu2O(1 0 0): Reaction mechanism deduced from experimental observations and theoretical computations

[1]  G. Thornton,et al.  Orientation of acetic acid hydrogen bonded to acetate terminated TiO2(110) , 2020, Surface Science.

[2]  R. Rousseau,et al.  Binding of Formic Acid on Anatase TiO2(101) , 2020 .

[3]  Yimin A. Wu,et al.  Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol , 2019, Nature Energy.

[4]  T. Brinck,et al.  Interaction of Atomic Hydrogen with the Cu2O(100) and (111) Surfaces , 2019, The Journal of Physical Chemistry C.

[5]  J. Stenlid,et al.  Adsorption and Decomposition of Ethanol on Cu2O(111) and (100) , 2019, The Journal of Physical Chemistry C.

[6]  L. Pettersson,et al.  Amorphous, Periodic Model of a Copper Electrocatalyst with Subsurface Oxygen for Enhanced CO Coverage and Dimerization , 2019, The Journal of Physical Chemistry C.

[7]  A. Savara,et al.  Effect of Sr Substitution in LaMnO3(100) on Catalytic Conversion of Acetic Acid to Ketene and Combustion-Like Products , 2019, The Journal of Physical Chemistry C.

[8]  T. Brinck,et al.  The Surface Structure of Cu2O(100): Nature of Defects , 2018, The Journal of Physical Chemistry C.

[9]  T. Brinck,et al.  Dehydrogenation of methanol on Cu2O(100) and (111). , 2017, The Journal of chemical physics.

[10]  E. Meyer,et al.  Surface science at the PEARL beamline of the Swiss Light Source , 2017, Journal of synchrotron radiation.

[11]  T. Brinck,et al.  Reactivity at the Cu2O(100):Cu-H2O interface: a combined DFT and PES study. , 2016, Physical chemistry chemical physics : PCCP.

[12]  F. Zaera,et al.  Adsorption and thermal chemistry of formic acid on clean and oxygen-predosed Cu(110) single-crystal surfaces revisited , 2016 .

[13]  T. Brinck,et al.  The Surface Structure of Cu2O(100) , 2016 .

[14]  A. Hellman,et al.  Trends in adsorbate induced core level shifts , 2015 .

[15]  Ye Xu,et al.  Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(1 1 1) , 2015 .

[16]  G. Pacchioni Ketonization of Carboxylic Acids in Biomass Conversion over TiO2 and ZrO2 Surfaces: A DFT Perspective , 2014 .

[17]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[18]  M. Batzill,et al.  Adsorption of Acetic Acid on Rutile TiO2(110) vs (011)-2 × 1 Surfaces , 2011 .

[19]  N. A. Deskins,et al.  Adsorption states and mobility of trimethylacetic acid molecules on reduced TiO(2)(110) surface. , 2010, Physical chemistry chemical physics : PCCP.

[20]  J. N. Wilson,et al.  Photoreaction of the rutile TiO2(011) single-crystal surface: reaction with acetic acid. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[21]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[22]  D. Barreca,et al.  The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production. , 2009, ChemSusChem.

[23]  M. Salmeron,et al.  Surface chemistry of Cu in the presence of CO2 and H2O. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[24]  Manos Mavrikakis,et al.  On the mechanism of low-temperature water gas shift reaction on copper. , 2008, Journal of the American Chemical Society.

[25]  N. Turro,et al.  Complete CO oxidation over Cu2O nanoparticles supported on silica gel. , 2006, Nano letters.

[26]  G. Kresse,et al.  Density functional study of CO on Rh(111) , 2004 .

[27]  M. Bowker,et al.  Acetic acid adsorption and decomposition on Pd(1 1 0) , 2004 .

[28]  H. Idriss,et al.  Reactions of acetic acid on UO2(111) single crystal surfaces , 2000 .

[29]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[30]  M. Bowker,et al.  Temperature-programmed desorption studies of methanol and formic acid decomposition on copper oxide surfaces , 1998 .

[31]  S. Thevuthasan,et al.  Chemisorption Geometry, Vibrational Spectra, and Thermal Desorption of Formic Acid on TiO2(110) , 1998 .

[32]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[33]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[34]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[35]  J. Vohs,et al.  Reaction of carboxylic acids on CeO2(111) and CeO2(100) , 1996 .

[36]  M. Bowker,et al.  The adsorption and decomposition of formic acid on Cu {110} , 1996 .

[37]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[38]  M. Barteau,et al.  Synthesis of ketenes with oxide catalysts , 1994 .

[39]  V. Ponec,et al.  Selective Reduction of Acetic Acid to Acetaldehyde on Iron Oxides , 1994 .

[40]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[41]  D. Cox,et al.  Propene adsorption on Cu2O single-crystal surfaces , 1992 .

[42]  M. Barteau,et al.  Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic acids on TiO2(001) single-crystal surfaces , 1990 .

[43]  J. Niemantsverdriet,et al.  THERMAL DESORPTION ANALYSIS: COMPARATIVE TEST OF TEN COMMONLY APPLIED PROCEDURES , 1990 .

[44]  J. Vohs,et al.  Reaction pathways and intermediates in the decomposition of acetic and propionic acids on the polar surfaces of zinc oxide , 1988 .

[45]  G. Mitchell,et al.  The surface chemistry of ketene on Pt(111) I. TPD and SIMS , 1987 .

[46]  M. Bowker,et al.  The adsorption and oxidation of acetic acid and acetaldehyde on Cu(110) , 1981 .

[47]  M. Bowker,et al.  XPS, UPS and thermal desorption studies of the reactions of formaldehyde and formic acid with the Cu(110) surface , 1981 .

[48]  M. Yoshimine,et al.  An ab initio study on ketene, hydroxyacetylene, formylmethylene, oxirene, and their rearrangement paths , 1980 .

[49]  B. Sexton Observation of formate species on a copper (100) surface by high resolution electron energy loss spectroscopy , 1979 .

[50]  C. D. Hurd,et al.  KETENE FROM ACETIC ACID , 1929 .

[51]  E. Iglesia,et al.  Experimental and theoretical assessment of the mechanism and site requirements for ketonization of carboxylic acids on oxides , 2017 .

[52]  C. Leygraf Atmospheric corrosion : (authorized translation into Chinese from the English version that appeared in John Wiley Sons in 2000) , 2000 .

[53]  Kazunari Domen,et al.  Cu2O as a photocatalyst for overall water splitting under visible light irradiation , 1998 .

[54]  J. M. Robert,et al.  Thermal desorption study of formic acid decomposition on a clean Cu(110) surface , 1980 .