Efficient computation of extreme excursion probabilities for dynamical systems

We develop a novel computational method for evaluating the extreme excursion probabilities arising for random initialization of nonlinear dynamical systems. The method uses a Markov chain Monte Carlo or a Laplace approximation approach to construct a biasing distribution that in turn is used in an importance sampling procedure to estimate the extreme excursion probabilities. The prior and likelihood of the biasing distribution are obtained by using Rice's formula from excursion probability theory. We use Gaussian mixture biasing distributions and approximate the non-Gaussian initial excitation by the method of moments to circumvent the linearity and Gaussianity assumptions needed by excursion probability theory. We demonstrate the effectiveness of this computational framework for nonlinear dynamical systems of up to 100 dimensions.

[1]  Adrian Sandu,et al.  A time-parallel approach to strong-constraint four-dimensional variational data assimilation , 2015, J. Comput. Phys..

[2]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[3]  Eric Vanden-Eijnden,et al.  Rogue waves and large deviations in deep sea , 2017, Proceedings of the National Academy of Sciences.

[4]  James A. Bucklew,et al.  Introduction to Rare Event Simulation , 2010 .

[5]  Dirk P. Kroese,et al.  Efficient Monte Carlo simulation via the generalized splitting method , 2012, Stat. Comput..

[6]  Stefano Giordano,et al.  Rare event simulation , 2002, Eur. Trans. Telecommun..

[7]  Hugo Touchette,et al.  A basic introduction to large deviations: Theory, applications, simulations , 2011, 1106.4146.

[8]  F. S. Wong,et al.  Slope Reliability and Response Surface Method , 1985 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Agnès Lagnoux,et al.  RARE EVENT SIMULATION , 2005, Probability in the Engineering and Informational Sciences.

[11]  Alef E. Sterk,et al.  Predictability of Extreme Waves in the Lorenz-96 Model Near Intermittency and Quasi-Periodicity , 2017, Complex..

[12]  G. Meehl,et al.  Climate extremes: observations, modeling, and impacts. , 2000, Science.

[13]  Ling Li,et al.  Bayesian Subset Simulation , 2016, SIAM/ASA J. Uncertain. Quantification.

[14]  J. Beck,et al.  Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation , 2001 .

[15]  L. Faravelli Response‐Surface Approach for Reliability Analysis , 1989 .

[16]  Lambros S. Katafygiotis,et al.  Geometric insight into the challenges of solving high-dimensional reliability problems , 2008 .

[17]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[18]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[19]  W. L. Dunn,et al.  Exploring Monte Carlo Methods , 2011 .

[20]  R. Srinivasan Importance Sampling: Applications in Communications and Detection , 2010 .

[21]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[22]  A.C.W.M. Vrouwenvelder,et al.  Stochastic modelling of extreme action events in structural engineering , 1998 .

[23]  James Martin,et al.  A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..

[24]  Benjamin Peherstorfer,et al.  Multifidelity Monte Carlo Estimation with Adaptive Low-Fidelity Models , 2019, SIAM/ASA J. Uncertain. Quantification.

[25]  James Martin,et al.  A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems , 2013, SIAM J. Sci. Comput..

[26]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[27]  James L. Beck,et al.  Hybrid Subset Simulation method for reliability estimation of dynamical systems subject to stochastic excitation , 2005 .

[28]  H. Kahn,et al.  Methods of Reducing Sample Size in Monte Carlo Computations , 1953, Oper. Res..

[29]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[30]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[31]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[32]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[33]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[34]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[35]  Harald E. Krogstad,et al.  Oceanic Rogue Waves , 2008 .

[36]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[37]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[38]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[39]  James L. Beck,et al.  Reliability Estimation for Dynamical Systems Subject to Stochastic Excitation using Subset Simulation with Splitting , 2005 .

[40]  Themistoklis P. Sapsis,et al.  Sequential sampling strategy for extreme event statistics in nonlinear dynamical systems , 2018, Proceedings of the National Academy of Sciences.

[41]  Wolfgang Fischer,et al.  German energy policy and the way to sustainability: Five controversial issues in the debate on the “Energiewende” , 2016 .

[42]  Stochastic Relaxation , 2014, Computer Vision, A Reference Guide.

[43]  Lambros S. Katafygiotis,et al.  A two-stage Subset Simulation-based approach for calculating the reliability of inelastic structural systems subjected to Gaussian random excitations , 2005 .

[44]  Eric Vanden-Eijnden,et al.  Subgrid-Scale Parameterization with Conditional Markov Chains , 2008 .

[45]  R. Adler The Geometry of Random Fields , 2009 .

[46]  Sandip Roy,et al.  Power System Extreme Event Detection: The Vulnerability Frontier , 2007, Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008).

[47]  C. Bucher,et al.  A fast and efficient response surface approach for structural reliability problems , 1990 .

[48]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Tapan Kumar Saha,et al.  Power system blackouts - literature review , 2009, 2009 International Conference on Industrial and Information Systems (ICIIS).

[50]  Lambros S. Katafygiotis,et al.  Bayesian post-processor and other enhancements of Subset Simulation for estimating failure probabilities in high dimensions , 2011 .

[51]  S. Rice Mathematical analysis of random noise , 1944 .

[52]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[53]  C. Cornell Engineering seismic risk analysis , 1968 .

[54]  D. Easterling,et al.  Observed variability and trends in extreme climate events: A brief review , 2000 .

[55]  Tom Ross,et al.  A climatology of 1980-2003 extreme weather and climate events , 2003 .