Orthogonal polynomials and Gaussian quadrature rules related to oscillatory weight functions

In this paper we consider polynomials orthogonal with respect to an oscillatory weight function w(x) = xeimπx on [-1, 1], where m is an integer. The existence of such polynomials as well as several of their properties (three-term recurrence relation, differential equation, etc.) are proved. We also consider related quadrature rules and give applications of such quadrature rules to some classes of integrals involving highly oscillatory integrands.

[1]  P. Nevai,et al.  A generalization of Poincare's theorem for recurrence equations , 1990 .

[2]  J. Miller Numerical Analysis , 1966, Nature.

[3]  Walter Gautschi,et al.  Orthogonal polynomials on the semicircle , 1990 .

[4]  G. Milovanović,et al.  Complex Jacobi matrices and quadrature rules , 2003 .

[5]  Gaussian Integration for Complex Weight Functions , 1978 .

[6]  WALTER GAUTSCHI Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.

[7]  Gradimir V. Milovanović,et al.  Numerical Calculation of Integrals Involving Oscillatory and Singular Kernels and Some Applications of Quadratures , 1998 .

[8]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[9]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[10]  Alphonse P. Magnus,et al.  Painleve´-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1995 .

[11]  Walter Gautschi,et al.  Polynomials orthogonal on the semicircle, II , 1987 .

[12]  Lionello Pasquini,et al.  Accurate computation of the zeros of the generalized Bessel polynomials , 2000, Numerische Mathematik.

[13]  Aleksandar S. Cvetković,et al.  THE MATHEMATICA PACKAGE \OrthogonalPolynomials" ⁄ , 2004 .

[14]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[15]  D. H. Griffel,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[16]  Aleksandar S. Cvetković,et al.  NOTE ON A CONSTRUCTION OF WEIGHTS IN GAUSS-TYPE QUADRATURE RULE , 2005 .

[17]  Gradimir V. Milovanić COMPLEX ORTHOGONALITY ON THE SEMICIRCLE WITH RESPECT TO GEGENBAUER WEIGHT: THEORY AND APPLICATIONS , 1989 .

[18]  Gradimir V. Milovanović,et al.  On polynomials orthogonal on a circular arc , 1994 .

[19]  Walter Gautschi,et al.  Polynomials orthogonal on the semicircle , 1986 .

[20]  Alphonse P. Magnus,et al.  Toeplitz matrix techniques and convergence of complex weight Pade´ approximants , 1987 .

[21]  G. Milovanović,et al.  AN APPLICATION OF LITTLE 1/q-JACOBI POLYNOMIALS TO SUMMATION OF CERTAIN SERIES , 2003 .

[22]  Herbert Stahl,et al.  Spurious poles in Pade´ approximation , 1998 .