Human erythrocyte spectrin dimer intrinsic viscosity: temperature dependence and implications for the molecular basis of the erythrocyte membrane free energy.

We have determined experimentally the temperature dependence of human erythrocyte spectrin dimer intrinsic viscosity at shear rates 8-12 s-1 using a Cartesian diver viscometer. We find that the intrinsic viscosity decreases from 43 +/- 3 ml/g at 4 degrees C to 34 +/- 3 ml/g when the temperature is increased to 38 degrees C. Our results show that spectrin dimers are flexible worm-like macromolecules with persistence length about 20 nm and that the mean square end-to-end distance for this worm-like macromolecules decreases when the temperature is increased. This implies that the spectrin dimer internal energy decreases when the end-to-end distance is increased and that the free energy increase associated with making the end-to-end distance longer than the equilibrium value for the free molecules is of entropic origin. The temperature dependence of the erythrocyte membrane shear modulus reported previously in the literature therefore appears mainly to be due to temperature dependent alterations in the membrane skeleton topology.

[1]  Shih-Chun Liu,et al.  Oligomeric states of spectrin in normal erythrocyte membranes: Biochemical and electron microscopic studies , 1984, Cell.

[2]  A. Elgsaeter,et al.  Human spectrin. VI. A viscometric study. , 1981, Biochimica et biophysica acta.

[3]  A. Mikkelsen,et al.  An electro-optic study of human erythrocyte spectrin dimers. The presence of calcium ions does not alter spectrin flexibility. , 1984, Biochimica et biophysica acta.

[4]  A. Mikkelsen,et al.  Human spectrin. II. An electro-optic study. , 1978, Biochimica et biophysica acta.

[5]  B. Roux,et al.  Differences in the electric birefringence of spectrin dimers and tetramers as shown by the fast reversing electric pulse method. , 1982, Biophysical chemistry.

[6]  R. Hochmuth Solid and liquid behavior of red cell membrane. , 1982, Annual review of biophysics and bioengineering.

[7]  R. Josephs,et al.  Structural study of spectrin from human erythrocyte membranes. , 1977, Biochemistry.

[8]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[9]  G. Ralston,et al.  Physico-chemical characterization of the spectrin tetramer from bovine erythrocyte membranes. , 1976, Biochimica et biophysica acta.

[10]  E. Ungewickell,et al.  Self-association of human spectrin. A thermodynamic and kinetic study. , 1978, European journal of biochemistry.

[11]  V. Marchesi The red cell membrane skeleton: recent progress. , 1983, Blood.

[12]  T. Steck THE ORGANIZATION OF PROTEINS IN THE HUMAN RED BLOOD CELL MEMBRANE , 1974, The Journal of cell biology.

[13]  A. Elgsaeter Human spectrin. I. A classical light scattering study. , 1978, Biochimica et biophysica acta.

[14]  V. Marchesi,et al.  Spectrin oligomers: a structural feature of the erythrocyte cytoskeleton. , 1981, Journal of supramolecular structure and cellular biochemistry.

[15]  Shao-Tang Sun,et al.  Phase transitions in ionic gels , 1980 .

[16]  Z. Kam,et al.  Solution scattering studies of dimeric and tetrameric spectrin. , 1982, Biophysical chemistry.

[17]  Takenao Yoshizaki,et al.  Transport Coefficients of Helical Wormlike Chains. 3. Intrinsic Viscosity , 1980 .

[18]  J. Dunbar,et al.  Hydrodynamic characterization of the heterodimer of spectrin. , 1981, Biochimica et biophysica acta.

[19]  Cohen Cm The molecular organization of the red cell membrane skeleton. , 1983 .

[20]  R. Waugh,et al.  Thermoelasticity of red blood cell membrane. , 1979, Biophysical journal.

[21]  Vincent T. Marchesi,et al.  Erythrocyte spectrin is comprised of many homologous triple helical segments , 1984, Nature.

[22]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[23]  K. Dill,et al.  Dynamics of Polymer Solutions. 3. An Instrument for Stress Relaxations on Dilute Solutions of Large Polymer Molecules , 1980 .

[24]  B. Zimm,et al.  Viscosity, Sedimentation, et Cetera, of Ring- and Straight-Chain Polymers in Dilute Solution , 1966 .

[25]  H. Yamakawa A Hypothesis on Polymer Chain Configurations. Helical Wormlike Chains , 1977 .

[26]  V. Marchesi,et al.  Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton , 1981, The Journal of cell biology.

[27]  R. Waugh Temperature dependence of the yield shear resultant and the plastic viscosity coefficient of erythrocyte membrane. Implications about molecular events during membrane failure. , 1982, Biophysical journal.

[28]  R. Cassoly,et al.  Rotational dynamics of spectrin in solution and ankyrin bound in human erythrocyte membrane , 1980, FEBS letters.

[29]  A. Mikkelsen,et al.  Human spectrin. V. A comparative electro-optic study of heterotetramers and heterodimers. , 1981, Biochimica et biophysica acta.

[30]  B. Zimm,et al.  Retardation Times of Deoxyribonucleic Acid Solutions. II. Improvements in Apparatus and Theory , 1972 .

[31]  D. Branton,et al.  Interaction of cytoskeletal proteins on the human erythrocyte membrane , 1981, Cell.

[32]  R. Johnson,et al.  Shape and volume changes in erythrocyte ghosts and spectrin-actin networks , 1980, The Journal of cell biology.

[33]  P. Flory,et al.  Treatment of Intrinsic Viscosities , 1951 .

[34]  O. Smidsrod,et al.  Estimation of the relative stiffness of the molecular chain in polyelectrolytes from measurements of viscosity at different ionic strengths , 1971, Biopolymers.

[35]  D M Shotton,et al.  The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies. , 1979, Journal of molecular biology.