Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods
暂无分享,去创建一个
[1] Arkadi Nemirovski,et al. Non-euclidean restricted memory level method for large-scale convex optimization , 2005, Math. Program..
[2] Vivek S. Borkar,et al. Distributed Asynchronous Incremental Subgradient Methods , 2001 .
[3] N. G. Zhurbenko,et al. Choice of fleet composition and allocation of aircraft to civil airline routes , 1976 .
[4] K. Kiwiel,et al. Parallel Subgradient Methods for Convex Optimization , 2001 .
[5] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[6] Frank Kelly,et al. Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..
[7] Stephen P. Boyd,et al. Processor Speed Control With Thermal Constraints , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.
[8] Samir Elhedhli,et al. Nondifferentiable Optimization , 2009, Encyclopedia of Optimization.
[9] Dimitri P. Bertsekas,et al. Incremental Subgradient Methods for Nondifferentiable Optimization , 2001, SIAM J. Optim..
[10] R. Srikant,et al. Network Optimization and Control , 2008, Found. Trends Netw..
[11] Francisco Barahona,et al. The volume algorithm: producing primal solutions with a subgradient method , 2000, Math. Program..
[12] Steven H. Low,et al. Optimization flow control—I: basic algorithm and convergence , 1999, TNET.
[13] V. F. Dem'yanov,et al. Nondifferentiable Optimization , 1985 .
[14] Yurii Nesterov,et al. Primal-dual subgradient methods for convex problems , 2005, Math. Program..
[15] Hanif D. Sherali,et al. A class of convergent primal-dual subgradient algorithms for decomposable convex programs , 1986, Math. Program..
[16] A. Robert Calderbank,et al. Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures , 2007, Proceedings of the IEEE.
[17] D. Bertsekas,et al. Convergen e Rate of In remental Subgradient Algorithms , 2000 .
[18] Derong Liu. The Mathematics of Internet Congestion Control , 2005, IEEE Transactions on Automatic Control.
[19] Andrzej Ruszczynski,et al. A merit function approach to the subgradient method with averaging , 2008, Optim. Methods Softw..
[20] T. Larsson,et al. A Lagrangean Relaxation Scheme for Structured Linear Programs With Application To Multicommodity Network Flows , 1997 .
[21] M. Patriksson,et al. Ergodic results and bounds on the optimal value in subgradient optimization , 1995 .
[22] Rayadurgam Srikant,et al. The Mathematics of Internet Congestion Control , 2003 .
[23] Hanif D. Sherali,et al. Recovery of primal solutions when using subgradient optimization methods to solve Lagrangian duals of linear programs , 1996, Oper. Res. Lett..
[24] Claude Lemaréchal,et al. Convergence of some algorithms for convex minimization , 1993, Math. Program..
[25] A. Banerjee. Convex Analysis and Optimization , 2006 .
[26] P. Luh,et al. On the Surrogate Gradient Algorithm for Lagrangian Relaxation , 2007 .
[27] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[28] Torbjörn Larsson,et al. Lagrangian Relaxation via Ballstep Subgradient Methods , 2007, Math. Oper. Res..
[29] John Darzentas,et al. Problem Complexity and Method Efficiency in Optimization , 1983 .
[30] M. Patriksson,et al. Ergodic convergence in subgradient optimization , 1998 .
[31] Michael Patriksson,et al. Ergodic, primal convergence in dual subgradient schemes for convex programming , 1999, Mathematical programming.