Magneto-anisotropic weak antilocalization in near-surface quantum wells

We investigate the effects of an in-plane magnetic field on the weak antilocalization signature of near-surface quantum wells lacking bulk and inversion symmetry. The measured magnetoconductivity exhibits a strong anisotropy with respect to the direction of the in-plane magnetic field. The two-fold symmetry of the observed magneto-anisotropy originates from the competition between Rashba and Dresselhaus spin-orbit couplings. The high sensitivity of the weak antilocalization to the spin texture produced by the combined Zeeman and spin-orbit fields results in very large anisotropy ratios, reaching 100%. Using a semiclassical universal model in quantitative agreement with the experimental data, we uniquely determine the values of the Dresselhaus and Rashba parameters as well as the effective in-plane g-factor of the electrons. Understanding these parameters provides new prospects for novel applications ranging from spintronics to topological quantum computing. , the Hamiltonian includes additional terms that make the electron g-factor anisotropic. We show that these terms are negligible compared to the Zeeman splitting g (cid:107) µ B B (cid:107) · σ extracted from magnetoconductivity measurements or compared to the strength of spin-orbit coupling.

[1]  A. Matos-Abiague,et al.  Anisotropic topological superconductivity in Josephson junctions , 2021, Physical Review B.

[2]  A. Matos-Abiague,et al.  Signatures of topological transitions in the spin susceptibility of Josephson junctions , 2021, Physical Review B.

[3]  J. Nitta,et al.  Full spin-orbit coefficient in III-V semiconductor wires based on the anisotropy of weak localization under in-plane magnetic field , 2021 .

[4]  I. Žutić,et al.  Phase Signature of Topological Transition in Josephson Junctions. , 2019, Physical review letters.

[5]  B. Scharf,et al.  Crystalline anisotropic topological superconductivity in planar Josephson junctions , 2020, 2007.03498.

[6]  K. Sardashti,et al.  Experimental measurements of effective mass in near-surface InAs quantum wells , 2019, 1911.02738.

[7]  L. Molenkamp,et al.  Topological superconductivity in a phase-controlled Josephson junction , 2018, Nature.

[8]  M. Manfra,et al.  Evidence of topological superconductivity in planar Josephson junctions , 2018, Nature.

[9]  D. Marinescu,et al.  Closed-Form Weak Localization Magnetoconductivity in Quantum Wells with Arbitrary Rashba and Dresselhaus Spin-Orbit Interactions. , 2018, Physical review letters.

[10]  J. Shabani,et al.  Transport properties of near surface InAs two-dimensional heterostructures , 2018, Applied Physics Letters.

[11]  C. Marcus,et al.  Zero-Energy Modes from Coalescing Andreev States in a Two-Dimensional Semiconductor-Superconductor Hybrid Platform. , 2017, Physical review letters.

[12]  T. Koga,et al.  Universal modeling of weak antilocalization corrections in quasi-two-dimensional electron systems using predetermined return orbitals. , 2017, Physical review. E.

[13]  C. Marcus,et al.  Anomalous Fraunhofer interference in epitaxial superconductor-semiconductor Josephson junctions , 2016, 1611.00190.

[14]  E. Linfield,et al.  Spin-orbit interaction in InAs/GaSb heterostructures quantified by weak antilocalization , 2016, 1610.09749.

[15]  C. M. Marcus,et al.  Transparent Semiconductor-Superconductor Interface and Induced Gap in an Epitaxial Heterostructure Josephson Junction , 2016, Physical Review Applied.

[16]  P. Weigele Stretching and breaking symmetry of the persistent spin helix in quantum transport , 2017 .

[17]  Anna Keselman,et al.  Topological Superconductivity in a Planar Josephson Junction , 2016, 1609.09482.

[18]  J. Nitta,et al.  Gate-controlled switching between persistent and inverse persistent spin helix states , 2016 .

[19]  Younghyun Kim,et al.  Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks , 2015, 1511.01127.

[20]  C. Back,et al.  Emergence of spin–orbit fields in magnetotransport of quasi-two-dimensional iron on gallium arsenide , 2015, Nature Communications.

[21]  A. Rushforth,et al.  Spin-dependent phenomena and device concepts explored in (Ga,Mn)As , 2013, 1310.1944.

[22]  A. Notargiacomo,et al.  Weak antilocalization and spin-orbit interaction in a two-dimensional electron gas , 2012 .

[23]  Takaaki Koga,et al.  Determination of spin-orbit coefficients in semiconductor quantum wells , 2011 .

[24]  R. L. Kallaher,et al.  Spin-orbit interaction determined by antilocalization in an InSb quantum well , 2010 .

[25]  R. Kent Smith,et al.  The 3D nanometer device project nextnano: Concepts, methods, results , 2007 .

[26]  L. Golub Weak antilocalization in high-mobility two-dimensional systems , 2004, cond-mat/0412047.

[27]  Michelle Y. Simmons,et al.  Weak localization in high-quality two-dimensional systems , 2004 .

[28]  T. Matsuyama,et al.  Weak localization and spin splitting in inversion layers on p -type InAs , 2004, cond-mat/0408127.

[29]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[30]  A. A. Sherstobitov,et al.  Weak antilocalization in quantum wells in tilted magnetic fields , 2003, cond-mat/0312074.

[31]  R. Winkler Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems , 2003 .

[32]  S. Mendach,et al.  Highly anisotropic electron transport in shallow InGaAs heterostructures , 2003 .

[33]  A. Gossard,et al.  Gate-controlled spin-orbit quantum interference effects in lateral transport. , 2002, Physical review letters.

[34]  H. Ohno,et al.  Semiconductor spintronics , 2002 .

[35]  Hideaki Takayanagi,et al.  Rashba spin-orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry. , 2002, Physical review letters.

[36]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[37]  D. Grundler Large Rashba splitting in InAs quantum wells due to electron wave function penetration into the barrier layers. , 2000, Physical review letters.

[38]  K. Chao,et al.  Crystal anisotropy effects on the weak-localization magnetoresistance of a III-V semiconductor quantum well in a magnetic field parallel to interfaces , 1999 .

[39]  Wojciech Knap,et al.  Universal behavior of magnetoconductance due to weak localization in two dimensions , 1997 .

[40]  S. Hallstein,et al.  Spin quantum beats in semiconductors , 1996 .

[41]  Bertho,et al.  Weak antilocalization and spin precession in quantum wells. , 1996, Physical review. B, Condensed matter.

[42]  Pikus Conduction-band spin splitting and negative magnetoresistance in A3B5 heterostructures. , 1995, Physical review. B, Condensed matter.

[43]  M. Dyakonov Magnetoconductance due to weak localization beyond the diffusion approximation: The high-field limit , 1994 .

[44]  G. E. Pikus,et al.  Weak localization in quantum wells with spin-orbit interaction , 1994 .

[45]  Datta,et al.  Observation of the interfacial-field-induced weak antilocalization in InAs quantum structures. , 1993, Physical review. B, Condensed matter.

[46]  A. Schmid,et al.  Anomalous magnetoconductance beyond the diffusion limit , 1987 .

[47]  S. Chakravarty,et al.  Weak localization: The quasiclassical theory of electrons in a random potential , 1986 .

[48]  H. Sakaki,et al.  Inelastic Scattering and Spin-Orbit Scattering in 2D Systems Of GaAs/AlGaAs Heterostructures , 1985 .

[49]  D. Khmelnitskii Localization and coherent scattering of electrons , 1984 .

[50]  A. Kawabata On the Field Dependence of Magnetoresistance in Two-Dimensional Systems , 1984 .

[51]  M. Pepper,et al.  Spin-orbit coupling and weak localisation in the 2D inversion layer of indium phosphide , 1982 .

[52]  A. I. Larkin,et al.  Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System , 1980 .