Web-Scale Multidimensional Visualization of Big Spatial Data to Support Earth Sciences - A Case Study with Visualizing Climate Simulation Data

The world is undergoing rapid changes in its climate, environment, and ecosystems due to increasing population growth, urbanization, and industrialization. Numerical simulation is becoming an important vehicle to enhance the understanding of these changes and their impacts, with regional and global simulation models producing vast amounts of data. Comprehending these multidimensional data and fostering collaborative scientific discovery requires the development of new visualization techniques. In this paper, we present a cyberinfrastructure solution—PolarGlobe—that enables comprehensive analysis and collaboration. PolarGlobe is implemented upon an emerging web graphics library, WebGL, and an open source virtual globe system Cesium, which has the ability to map spatial data onto a virtual Earth. We have also integrated volume rendering techniques, value and spatial filters, and vertical profile visualization to improve rendered images and support a comprehensive exploration of multi-dimensional spatial data. In this study, the climate simulation dataset produced by the extended polar version of the well-known Weather Research and Forecasting Model (WRF) is used to test the proposed techniques. PolarGlobe is also easily extendable to enable data visualization for other Earth Science domains, such as oceanography, weather, or geology.

[1]  Jarke J. van Wijk,et al.  The value of visualization , 2005, VIS 05. IEEE Visualization, 2005..

[2]  Olaf Kolditz,et al.  Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches , 2014, Environmental Earth Sciences.

[3]  Sue Vink,et al.  A Web-based system enabling the integration, analysis, and 3D sub-surface visualization of groundwater monitoring data and geological models , 2016, Int. J. Digit. Earth.

[4]  David Wheeler,et al.  Environmental Regulation and Development: A Cross-country Empirical Analysis , 2001 .

[5]  N. C. Van de Giesen,et al.  Remote web-based 3D visualization of hydrological forecasting datasets , 2015 .

[6]  Enzo Baccarelli,et al.  Energy-efficient adaptive networked datacenters for the QoS support of real-time applications , 2014, The Journal of Supercomputing.

[7]  Jung Hong Chuang Level of Detail for 3D Graphics , 2002 .

[8]  J. G. Ferrigno,et al.  Retreating Glacier Fronts on the Antarctic Peninsula over the Past Half-Century , 2005, Science.

[9]  David Ellsworth,et al.  Managing Big Data for Scientific Visualization , 2015 .

[10]  J. A. Parker,et al.  Comparison of Interpolating Methods for Image Resampling , 1983, IEEE Transactions on Medical Imaging.

[11]  Maria Antonia Brovelli,et al.  NASA WEBWORLDWIND: MULTIDIMENSIONAL VIRTUAL GLOBE FOR GEO BIG DATA VISUALIZATION , 2016 .

[12]  G. Meehl,et al.  Trends in Extreme Weather and Climate Events: Issues Related to Modeling Extremes in Projections of Future Climate Change* , 2000 .

[13]  Roy D. Pea,et al.  The climate visualizer: Sense-making through scientific visualization , 1994 .

[14]  C. Tacoli Crisis or adaptation? Migration and climate change in a context of high mobility , 2009 .

[15]  Cees T. A. M. de Laat,et al.  Addressing big data issues in Scientific Data Infrastructure , 2013, 2013 International Conference on Collaboration Technologies and Systems (CTS).

[16]  N. Grimm,et al.  Global Change and the Ecology of Cities , 2008, Science.

[17]  J. Overpeck,et al.  Climate Data Challenges in the 21st Century , 2011, Science.

[18]  E. Feil,et al.  Climate Effects of Black Carbon Aerosols in China and India , 2002 .

[19]  J. R. Alder,et al.  Web based visualization of large climate data sets , 2015, Environ. Model. Softw..

[20]  Yaxing Wei,et al.  UV-CDAT: Analyzing Climate Datasets from a User's Perspective , 2013, Computing in Science & Engineering.

[21]  David P. Roy,et al.  Using NASA's World Wind virtual globe for interactive internet visualization of the global MODIS burned area product , 2008 .

[22]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[23]  A. Hinks A Retro-Azimuthal Equidistant Projection of the Whole Sphere , 1929 .

[24]  M. Ament,et al.  Volume Rendering , 2015 .

[25]  Enzo Baccarelli,et al.  Energy-efficient dynamic traffic offloading and reconfiguration of networked data centers for big data stream mobile computing: review, challenges, and a case study , 2016, IEEE Network.

[26]  Pak Chung Wong,et al.  Visual analytics of large-scale climate model data , 2014, 2014 IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV).

[27]  Wenwen Li,et al.  Polar Cyclone Identification from 4D Climate Data in a Knowledge-Driven Visualization System , 2016 .

[28]  Thomas Ertl,et al.  Interactive Clipping Techniques for Texture-Based Volume Visualization and Volume Shading , 2003, IEEE Trans. Vis. Comput. Graph..

[29]  S. Sheppard Visualizing Climate Change: A Guide to Visual Communication of Climate Change and Developing Local Solutions , 2012 .

[30]  W. Teng,et al.  Developing Online Visualization and Analysis Services for NASA Satellite-Derived Global Precipitation Products during the Big Geospatial Data Era , 2014 .

[31]  K. Emanuel Increasing destructiveness of tropical cyclones over the past 30 years , 2005, Nature.

[32]  Stephen Mann,et al.  Cubic precision Clough-Tocher interpolation , 1999, Comput. Aided Geom. Des..

[33]  Prabhat,et al.  Ultrascale Visualization of Climate Data , 2013, Computer.

[34]  Liping Di,et al.  Development of a Web-based visualization platform for climate research using Google Earth , 2012, Comput. Geosci..

[35]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[36]  A. Gore The digital earth : Understanding our planet in the 21st century , 1998 .

[37]  M. Tamisiea,et al.  Recent mass balance of polar ice sheets inferred from patterns of global sea-level change , 2001, Nature.

[38]  Maged N Kamel Boulos,et al.  Web GIS in practice III: creating a simple interactive map of England's Strategic Health Authorities using Google Maps API, Google Earth KML, and MSN Virtual Earth Map Control , 2005, International journal of health geographics.

[39]  Jessica Hausman,et al.  Managing and servicing physical oceanographic data at a NASA Distributed Active Archive Center , 2016, OCEANS 2016 MTS/IEEE Monterey.

[40]  Varun Chandola,et al.  iGlobe: an interactive visualization and analysis framework for geospatial data , 2011, COM.Geo.

[41]  Gang Wang,et al.  A parallel algorithm for viewshed analysis in three-dimensional Digital Earth , 2015, Comput. Geosci..

[42]  A. Goudie,et al.  Dust storms: recent developments. , 2009, Journal of environmental management.

[43]  Chaowei Phil Yang,et al.  Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes , 2011, Comput. Geosci..

[44]  Wenwen Li,et al.  PolarGlobe: A web-wide virtual globe system for visualizing multidimensional, time-varying, big climate data , 2017, Int. J. Geogr. Inf. Sci..

[45]  Thomas Maxwell,et al.  The Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT): Data Analysis and Visualization for Geoscience Data , 2013 .

[46]  Jianhua Gong,et al.  Visualizing 3D atmospheric data with spherical volume texture on virtual globes , 2014, Comput. Geosci..

[47]  Wolfgang Lucht,et al.  Visualization of Biosphere Changes in the Context of Climate Change , 2008 .

[48]  Sheng Wu,et al.  A scalable cyberinfrastructure solution to support big data management and multivariate visualization of time-series sensor observation data , 2016, Earth Science Informatics.

[49]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[50]  F. Giorgi,et al.  Approaches to the simulation of regional climate change: A review , 1991 .

[51]  Xiaodong Zhu,et al.  Investigation of a coupling model of coordination between urbanization and the environment. , 2012, Journal of environmental management.

[52]  Carl Kesselman,et al.  High-Performance Remote Access to Climate Simulation Data: A Challenge Problem for Data Grid Technologies , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[53]  Qunying Huang,et al.  A High Performance Web-Based System for Analyzing and Visualizing Spatiotemporal Data for Climate Studies , 2013, W2GIS.

[54]  Wang Feng,et al.  A parallel algorithm for viewshed analysis in three-dimensional Digital Earth , 2015 .

[55]  Petr Cizek,et al.  The ethics of Google Earth: crossing thresholds from spatial data to landscape visualisation. , 2009, Journal of environmental management.