Tensor-network approach for quantum metrology in many-body quantum systems

Identification of the optimal quantum metrological protocols in realistic many particle quantum models is in general a challenge that cannot be efficiently addressed by the state-of-the-art numerical and analytical methods. Here we provide a comprehensive framework exploiting matrix product operators (MPO) type tensor networks for quantum metrological problems. The maximal achievable estimation precision as well as the optimal probe states in previously inaccessible regimes can be identified including models with short-range noise correlations. Moreover, the application of infinite MPO (iMPO) techniques allows for a direct and efficient determination of the asymptotic precision in the limit of infinite particle numbers. We illustrate the potential of our framework in terms of an atomic clock stabilization (temporal noise correlation) example as well as magnetic field sensing (spatial noise correlations). As a byproduct, the developed methods may be used to calculate the fidelity susceptibility—a parameter widely used to study phase transitions. The maximum precision achievable in quantum metrology is in general tractable only in few-body scenarios or in case of uncorrelated local noise. Here, the authors show a tensor networks method to compute such bounds in cases with large number of probes and short-range spatial and temporal noise correlations.

[1]  Carlton M. Caves,et al.  Fundamental quantum limit to waveform estimation , 2011, CLEO 2011.

[2]  L. Pezzè,et al.  Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.

[3]  A S Sørensen,et al.  Stability of atomic clocks based on entangled atoms. , 2004, Physical review letters.

[4]  Katarzyna Macieszczak Quantum Fisher Information: Variational principle and simple iterative algorithm for its efficient computation , 2013, 1312.1356.

[5]  J. Eisert,et al.  Reliable quantum certification of photonic state preparations , 2014, Nature Communications.

[6]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[7]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[8]  G. Tóth,et al.  Quantum States with a Positive Partial Transpose are Useful for Metrology. , 2017, Physical review letters.

[9]  Masahiro Kitagawa,et al.  Spin Squeezing and Decoherence Limit in Ramsey Spectroscopy , 2001 .

[10]  Christopher T. Chubb,et al.  Hand-waving and interpretive dance: an introductory course on tensor networks , 2016, 1603.03039.

[11]  K. Stetson,et al.  Progress in optics , 1980, IEEE Journal of Quantum Electronics.

[12]  Martin Fraas,et al.  Bayesian quantum frequency estimation in presence of collective dephasing , 2013, 1311.5576.

[13]  Paola Cappellaro,et al.  Spatial noise filtering through error correction for quantum sensing , 2017, npj Quantum Information.

[14]  Rafal Demkowicz-Dobrzanski,et al.  Optimal phase estimation with arbitrary a priori knowledge , 2011, 1102.0786.

[15]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  J. Kołodyński,et al.  Quantum limits in optical interferometry , 2014, 1405.7703.

[18]  Seth Lloyd,et al.  Advances in photonic quantum sensing , 2018, Nature Photonics.

[19]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[20]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[21]  J. Sirker Finite-temperature fidelity susceptibility for one-dimensional quantum systems. , 2010, Physical review letters.

[22]  L. Cincio,et al.  Characterizing topological order by studying the ground States on an infinite cylinder. , 2012, Physical review letters.

[23]  F. Verstraete,et al.  Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.

[24]  J. Preskill,et al.  Achieving the Heisenberg limit in quantum metrology using quantum error correction , 2017, Nature Communications.

[25]  N. Paunkovic,et al.  Ground state overlap and quantum phase transitions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  J. Czajkowski,et al.  Adaptive quantum metrology under general Markovian noise , 2017, 1704.06280.

[27]  P. Szankowski,et al.  Environmental noise spectroscopy with qubits subjected to dynamical decoupling , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  S. B. Cavalcanti,et al.  Restoring the Heisenberg limit via collective non-Markovian dephasing , 2018, Physical Review A.

[29]  Paola Cappellaro,et al.  Ancilla-Free Quantum Error Correction Codes for Quantum Metrology. , 2018, Physical review letters.

[30]  Jan Jeske,et al.  Quantum metrology in the presence of spatially correlated noise: Restoring Heisenberg scaling , 2013, 1307.6301.

[31]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[32]  Bogdan Damski,et al.  Quantum fidelity in the thermodynamic limit. , 2010, Physical review letters.

[33]  C. Sire,et al.  Quantum critical scaling of fidelity susceptibility , 2009, 0912.2689.

[34]  A Retzker,et al.  Increasing sensing resolution with error correction. , 2013, Physical review letters.

[35]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[36]  R. Pfeifer,et al.  NCON: A tensor network contractor for MATLAB , 2014, 1402.0939.

[37]  Pavel Sekatski,et al.  Quantum metrology with full and fast quantum control , 2016, 1603.08944.

[38]  Rafal Demkowicz-Dobrzanski,et al.  The quantum Allan variance , 2016, 1601.01685.

[39]  P. Horodecki,et al.  At the limits of criticality-based quantum metrology: apparent super-Heisenberg scaling revisited , 2017, 1702.05660.

[40]  A S Sørensen,et al.  Heisenberg-limited atom clocks based on entangled qubits. , 2013, Physical review letters.

[41]  Animesh Datta,et al.  Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.

[42]  C. Helstrom Quantum detection and estimation theory , 1969 .

[43]  Roman Schnabel,et al.  Squeezed states of light and their applications in laser interferometers , 2016, 1611.03986.

[44]  Dominic W Berry,et al.  Stochastic Heisenberg limit: optimal estimation of a fluctuating phase. , 2013, Physical review letters.

[45]  Philippe Corboz,et al.  Variational optimization with infinite projected entangled-pair states , 2016, 1605.03006.

[46]  Jan Kolodynski,et al.  Efficient tools for quantum metrology with uncorrelated noise , 2013, 1303.7271.

[47]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[48]  Marcin Jarzyna,et al.  Matrix product states for quantum metrology. , 2013, Physical review letters.

[49]  Jun Ye,et al.  Optical atomic clocks , 2014, 1407.3493.

[50]  Sabine Wolk,et al.  Estimation of gradients in quantum metrology , 2017, 1703.09123.

[51]  Lorenzo Maccone,et al.  Using entanglement against noise in quantum metrology. , 2014, Physical review letters.

[52]  Jan Jeske,et al.  Quantum metrology subject to spatially correlated Markovian noise: restoring the Heisenberg limit , 2014 .

[53]  Sammy Ragy,et al.  Compatibility in multiparameter quantum metrology , 2016, 1608.02634.

[54]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[55]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[56]  B. Kraus,et al.  Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.

[57]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[58]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[59]  小谷 正雄 日本物理学会誌及びJournal of the Physical Society of Japanの月刊について , 1955 .