Quenched Mass Transport of Particles Toward a Target

We consider the stochastic target problem of finding the collection of initial laws of a mean-field stochastic differential equation such that we can control its evolution to ensure that it reaches a prescribed set of terminal probability distributions, at a fixed time horizon. Here, laws are considered conditionally to the path of the Brownian motion that drives the system. We establish a version of the geometric dynamic programming principle for the associated reachability sets and prove that the corresponding value function is a viscosity solution of a geometric partial differential equation. This provides a characterization of the initial masses that can be almost-surely transported towards a given target, along the paths of a stochastic differential equation. Our results extend [16] to our setting.

[1]  G. Giacomin Random Polymer Models , 2007 .

[2]  Jean Vaillancourt On the existence of random mckean–vlasov limits for triangular arrays of exchangeable diffusions , 1988 .

[3]  Jean Vaillancourt,et al.  Stochastic McKean-Vlasov equations , 1995 .

[4]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[5]  Juan Li,et al.  Mean-field stochastic differential equations and associated PDEs , 2014, 1407.1215.

[6]  Hans Föllmer,et al.  Quantile hedging , 1999, Finance Stochastics.

[7]  Nizar Touzi,et al.  Stochastic Target Problems, Dynamic Programming, and Viscosity Solutions , 2002, SIAM J. Control. Optim..

[8]  Huyen Pham,et al.  Zero-sum stochastic differential games of generalized McKean–Vlasov type , 2018, Journal de Mathématiques Pures et Appliquées.

[9]  Matteo Burzoni,et al.  Viscosity Solutions for Controlled McKean-Vlasov Jump-Diffusions , 2019, SIAM J. Control. Optim..

[10]  H. Heyer Statistics of random processes I: General theory , 1983 .

[11]  Fausto Gozzi,et al.  Stochastic optimal control in infinite dimension : dynamic programming and HJB equations , 2017 .

[12]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[13]  A. Sznitman Topics in propagation of chaos , 1991 .

[14]  B. Jourdain,et al.  Nonlinear SDEs driven by L\'evy processes and related PDEs , 2007, 0707.2723.

[15]  A. Shiryayev,et al.  Statistics of Random Processes I: General Theory , 1984 .

[16]  H. Soner,et al.  Dynamic programming for stochastic target problems and geometric flows , 2002 .

[17]  Francois Delarue,et al.  The Master Equation for Large Population Equilibriums , 2014, 1404.4694.

[18]  Daniel Lacker,et al.  Limit Theory for Controlled McKean-Vlasov Dynamics , 2016, SIAM J. Control. Optim..

[19]  Rongfeng Sun,et al.  Annealed vs quenched critical points for a random walk pinning model , 2008, 0807.2752.

[20]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[21]  Nizar Touzi,et al.  The Dynamic Programming Equation for Second Order Stochastic Target Problems , 2009, SIAM J. Control. Optim..

[22]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[23]  Xiaolu Tan,et al.  A Pseudo-Markov Property for Controlled Diffusion Processes , 2016, SIAM J. Control. Optim..

[24]  Bruno Bouchard,et al.  Stochastic Target Problems with Controlled Loss , 2009, SIAM J. Control. Optim..

[25]  Le Doussal P,et al.  Annealed versus quenched diffusion coefficient in random media. , 1989, Physical review. B, Condensed matter.

[26]  D. Crisan,et al.  A Probabilistic Approach to Classical Solutions of the Master Equation for Large Population Equilibria , 2014, Memoirs of the American Mathematical Society.

[27]  Xiaolu Tan,et al.  A note on solutions to controlled martingale problems and their conditioning , 2013 .

[28]  Dimitri P. Bertsekas,et al.  Stochastic optimal control : the discrete time case , 2007 .