Growth of nanowires

Abstract The tremendous interest in nanoscale structures such as quantum dots (zero-dimension) and wires (quasi-one-dimension) stems from their size-dependent properties. One-dimensional (1D) semiconductor nanostructures are of particular interest because of their potential applications in nanoscale electronic and optoelectronic devices. For 1D semiconductor nanomaterials to have wide practical application, however, several areas require further development. In particular, the fabrication of desired 1D nanomaterials with tailored atomic structures and their assembly into functional devices are still major challenges for nanotechnologists. In this review, we focus on the status of research on the formation of nanowire structures via highly anisotropic growth of nanocrystals of semiconductor and metal oxide materials with an emphasis on the structural characterization of the nucleation, initial growth, defects and interface structures, as well as on theoretical analyses of nanocrystal formation, reactivity and stability. We review various methods used and mechanisms involved to generate 1D nanostructures from different material systems through self-organized growth techniques including vapor–liquid–solid growth, oxide-assisted chemical vapor deposition (without a metal catalyst), laser ablation, thermal evaporation, metal-catalyzed molecular beam epitaxy, chemical beam epitaxy and hydrothermal reaction. 1D nanostructures grown by these technologies have been observed to exhibit unusual growth phenomena and unexpected properties, e.g., diameter-dependent and temperature-dependent growth directions, structural transformation by enhanced photothermal effects and phase transformation induced by the point contact reaction in ultra-thin semiconductor nanowires. Recent progress in controlling growth directions, defects, interface structures, structural transformation, contacts and hetero-junctions in 1D nanostructures is addressed. Also reviewed are the quantitative explorations and predictions of some challenging 1D nanostructures and descriptions of the growth mechanisms of 1D nanostructures, based on the energetic, dynamic and kinetic behaviors of the building block nanostructures and their surfaces and/or interfaces.

[1]  Volker Schmidt,et al.  Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism , 2007 .

[2]  V. Dubrovskii,et al.  General form of the dependences of nanowire growth rate on the nanowire radius , 2007 .

[3]  J. Howe,et al.  In Situ Transmission Electron Microscopy Studies of the Solid–Liquid Interface , 2004 .

[4]  Charles M. Lieber,et al.  Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices , 2003 .

[5]  Charles M. Lieber,et al.  Nanorod-Superconductor Composites: A Pathway to Materials with High Critical Current Densities , 1996, Science.

[6]  Y. W. Wang,et al.  Micro-Raman investigation of GaN nanowires prepared by direct reaction Ga with NH3 , 2001 .

[7]  Margit Zacharias,et al.  Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach , 2005 .

[8]  Rupert Huber,et al.  TEMPLATE SYNTHESIS OF NANOWIRES IN POROUS POLYCARBONATE MEMBRANES: ELECTROCHEMISTRY AND MORPHOLOGY , 1997 .

[9]  Shui-Tong Lee,et al.  Laser Ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires , 2000 .

[10]  Roald Hoffmann,et al.  A Chemical and Theoretical Way to Look at Bonding on Surfaces. , 1987 .

[11]  Y. W. Chen,et al.  Self-assembled silicon nanotubes under supercritically hydrothermal conditions. , 2005, Physical review letters.

[12]  L. Rayleigh On The Instability Of Jets , 1878 .

[13]  K. Kavanagh,et al.  Growth, branching, and kinking of molecular-beam epitaxial 〈110〉 GaAs nanowires , 2003 .

[14]  Charles R. Martin,et al.  Sol−Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures , 1997 .

[15]  Lars Samuelson,et al.  Solid-phase diffusion mechanism for GaAs nanowire growth , 2004, Microscopy and Microanalysis.

[16]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[17]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[18]  Ning Wang,et al.  Silicon nanowires prepared by laser ablation at high temperature , 1998 .

[19]  J. Gaumet,et al.  Laser Ablation of Silica: Study of Induced Clusters by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry , 1996 .

[20]  Lai‐Sheng Wang,et al.  A Photoelectron Spectroscopic Study of Small Silicon Oxide Clusters: SiO2, Si2O3, and Si2O4 , 1996 .

[21]  H. Urbassek,et al.  Tubular structures of silicon , 2001 .

[22]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[23]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[24]  Michael W. Schmidt,et al.  Structures and Fragmentations of Small Silicon Oxide Clusters by ab Initio Calculations , 2003 .

[25]  Shui-Tong Lee,et al.  Electronic and geometric structure of thin stable short silicon nanowires , 2002 .

[26]  Dongju Zhang,et al.  Structural model of silica nanowire assembled from a highly stable (SiO2)8 unit. , 2006, The journal of physical chemistry. B.

[27]  Xingcai Wu,et al.  Preparation and photoluminescence properties of crystalline GeO2 nanowires , 2001 .

[28]  D. Goodman,et al.  Structure of thin SiO2 films grown on Mo(112) , 2004 .

[29]  L. Vayssieres Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions , 2003 .

[30]  Jena,et al.  Physics of small metal clusters: Topology, magnetism, and electronic structure. , 1985, Physical review. B, Condensed matter.

[31]  Younan Xia,et al.  A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. , 2003, Journal of the American Chemical Society.

[32]  S. Zhang,et al.  Surface energy and the common dangling bond rule for semiconductors. , 2004, Physical review letters.

[33]  C. R. Martin,et al.  Smart nanotubes for bioseparations and biocatalysis. , 2002, Journal of the American Chemical Society.

[34]  Is there a thermodynamic size limit of nanowires grown by the vapor-liquid-solid process? , 2003 .

[35]  Shui-Tong Lee,et al.  Yttrium–barium–copper–oxygen nanorods synthesized by laser ablation , 2000 .

[36]  Z. Fan,et al.  ZnO nanowire field-effect transistor and oxygen sensing property , 2004 .

[37]  Catherine J. Murphy,et al.  CONTROLLING THE ASPECT RATIO OF INORGANIC NANORODS AND NANOWIRES , 2002 .

[38]  M. Sierka,et al.  Atomic structure of a thin silica film on a Mo(112) substrate: a two-dimensional network of SiO4 tetrahedra. , 2005, Physical review letters.

[39]  E. I. Givargizov Fundamental aspects of VLS growth , 1975 .

[40]  M. H. An,et al.  Room‐temperature visible photoluminescence from silicon‐rich oxide layers deposited by an electron cyclotron resonance plasma source , 1996 .

[41]  Z. Ye,et al.  Quasi-aligned ZnO nanotubes grown on Si substrates , 2005 .

[42]  Shui-Tong Lee,et al.  Structural transition in nanosized silicon clusters , 2002 .

[43]  U. Gösele,et al.  Chemical tension and global equilibrium in VLS nanostructure growth process: from nanohillocks to nanowires , 2007 .

[44]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.

[45]  Zhiyong Tang,et al.  Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires , 2002, Science.

[46]  Yit-Tsong Chen,et al.  Two-photon-excited luminescence and defect formation in SiO 2 nanoparticles induced by 6.4-eV ArF laser light , 2000 .

[47]  F. Simmel,et al.  Quantum interference in a one-dimensional silicon nanowire , 2003 .

[48]  Jun Zhang,et al.  Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence , 2002 .

[49]  Xuesong Shi,et al.  Electrochemical Preparation of CdSe Nanowire Arrays , 2000 .

[50]  P. Yang,et al.  Metalorganic Chemical Vapor Deposition Route to GaN Nanowires with Triangular Cross Sections , 2003 .

[51]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[52]  Younan Xia,et al.  Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone) , 2002 .

[53]  S. Erkoç,et al.  Structural and electronic properties of single-wall ZnO nanotubes , 2005 .

[54]  Y. Ohishi,et al.  Microscopic structure of nanometer-sized silica particles , 2004 .

[55]  X. W. Sun,et al.  Stable field emission from hydrothermally grown ZnO nanotubes , 2006 .

[56]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[57]  Harry E. Ruda,et al.  Growth of silicon nanowires via gold/silane vapor–liquid-solid reaction , 1997 .

[58]  Robert C. Cammarata,et al.  Nanomaterials : synthesis, properties, and applications , 1996 .

[59]  Wei Qian,et al.  Amorphous silica nanowires: Intensive blue light emitters , 1998 .

[60]  H. Yan,et al.  Morphogenesis of One‐Dimensional ZnO Nano‐ and Microcrystals , 2003 .

[61]  Role of electric field on formation of silicon nanowires , 2003 .

[62]  Shui-Tong Lee,et al.  Bulk-quantity Si nanosphere chains prepared from semi-infinite length Si nanowires , 2001 .

[63]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[64]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[65]  M. Zhang,et al.  Why silicon nanotubes stably exist in armchair structure , 2003 .

[66]  M. López-López,et al.  Hillocks formation during the molecular beam epitaxial growth of ZnSe on GaAs substrates , 1998 .

[67]  Y. F. Chan,et al.  The Size‐Dependent Growth Direction of ZnSe Nanowires , 2006 .

[68]  S. T. Lee,et al.  Silicon monoxide clusters: the favorable precursors for forming silicon nanostructures. , 2004, Physical review letters.

[69]  L. Cederbaum,et al.  A new class of free stable doubly negative systems: First investigations on the SimO2−n series , 1995 .

[70]  Theresa S. Mayer,et al.  Templated Surface Sol–Gel Synthesis of SiO2 Nanotubes and SiO2‐Insulated Metal Nanowires , 2003 .

[71]  S. Senz,et al.  The shape of epitaxially grown silicon nanowires and the influence of line tension , 2005 .

[72]  Shui-Tong Lee,et al.  Structural properties of hydrogenated silicon nanocrystals and nanoclusters , 2002 .

[73]  T. C. Wong,et al.  Gold nanowires from silicon nanowire templates , 2004 .

[74]  Shui-Tong Lee,et al.  High reactivity of silicon suboxide clusters , 2001 .

[75]  J. Kang,et al.  Twist of hypothetical silicon nanotubes , 2004 .

[76]  C. Lee,et al.  Growth Direction and Cross‐Sectional Study of Silicon Nanowires , 2003 .

[77]  Charles M Lieber,et al.  Semiconductor nanowire heterostructures , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[78]  Ning Wang,et al.  Fabrication and magnetic properties of ultrathin Fe nanowire arrays , 2003 .

[79]  Ning Wang,et al.  FORMATION OF ZNO NANOSTRUCTURES BY A SIMPLE WAY OF THERMAL EVAPORATION , 2002 .

[80]  Chongwu Zhou,et al.  Synthesis and electronic transport studies of CdO nanoneedles , 2003 .

[81]  Chun‐Sing Lee,et al.  Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. , 2002, Journal of the American Chemical Society.

[82]  S. T. Lee,et al.  Structures and energetics of hydrogen-terminated silicon nanowire surfaces. , 2005, The Journal of chemical physics.

[83]  J. Heitmann,et al.  Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach , 2002 .

[84]  Shui-Tong Lee,et al.  Diameter modification of silicon nanowires by ambient gas , 1999 .

[85]  Changhong Liu,et al.  High‐Density, Ordered Ultraviolet Light‐Emitting ZnO Nanowire Arrays , 2003 .

[86]  X. Zeng,et al.  Metallic single-walled silicon nanotubes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Timothy J. Trentler,et al.  Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth , 1995, Science.

[88]  N. Jana,et al.  Preparation of Polystyrene- and Silica-Coated Gold Nanorods and Their Use as Templates for the Synthesis of Hollow Nanotubes , 2001 .

[89]  A. Cottrell,et al.  Dislocations and plastic flow in crystals , 1953 .

[90]  Jacobson,et al.  Equilibrium shape of Si. , 1993, Physical review letters.

[91]  Andrew R. Barron,et al.  Silica Coated Single Walled Carbon Nanotubes , 2003 .

[92]  Ning Wang,et al.  NUCLEATION AND GROWTH OF SI NANOWIRES FROM SILICON OXIDE , 1998 .

[93]  S. Lanfredi,et al.  Thermistor ceramic with negative temperature coefficient based on Zn7Sb2O12: An inverse spinel-type phase , 2002 .

[94]  Shui-Tong Lee,et al.  Fabrication of Germanium‐Filled Silica Nanotubes and Aligned Silica Nanofibers , 2003 .

[95]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[96]  Jun Li,et al.  Epitaxial Directional Growth of Indium-Doped Tin Oxide Nanowire Arrays , 2003 .

[97]  Jane P. Chang,et al.  In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. , 2007, Nano letters.

[98]  Young Woon Kim,et al.  Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. , 2005, Journal of the American Chemical Society.

[99]  Gregory J. Wagner,et al.  Mechanical resonance of quartz microfibers and boundary condition effects , 2004 .

[100]  Shui-Tong Lee,et al.  Synthesis and microstructure of gallium phosphide nanowires , 2001 .

[101]  E. I. Givargizov Highly Anisotropic Crystals , 1986 .

[102]  Yong Ding,et al.  Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO. , 2004, Journal of the American Chemical Society.

[103]  Charles M. Lieber,et al.  GaN nanowire lasers with low lasing thresholds , 2005 .

[104]  H. Schäfer,et al.  Zur Kenntnis der Disilicide der Erdalkalimetalle , 1970 .

[105]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[106]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[107]  Cheol Jin Lee,et al.  Synthesis of high-purity GaP nanowires using a vapor deposition method , 2003 .

[108]  M. Menon,et al.  ARE QUASI-ONE DIMENSIONAL STRUCTURES OF SI STABLE? , 1999 .

[109]  Ning Wang,et al.  A General Synthetic Route to III-V Compound Semiconductor Nanowires** , 2001 .

[110]  D. Harker,et al.  A new law of crystal morphology extending the law of Bravais , 1937 .

[111]  Peter K. Dorhout,et al.  Sol−Gel Template Synthesis of Semiconductor Nanostructures , 1997 .

[112]  Jinlong Yang,et al.  Piezoelectricity in ZnO nanowires: A first-principles study , 2006 .

[113]  Yoshio Bando,et al.  Bright visible photoluminescence from silica nanotube flakes prepared by the sol-gel template method , 2002 .

[114]  Peidong Yang,et al.  Germanium Nanowire Growth via Simple Vapor Transport , 2000 .

[115]  S. Mao,et al.  Quantum efficiency of ZnO nanowire nanolasers , 2005 .

[116]  Jillian F. Banfield,et al.  Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania , 1999 .

[117]  Jae Hee Song,et al.  Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. , 2002, Chemistry.

[118]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[119]  Peidong Yang,et al.  Dendritic nanowire ultraviolet laser array. , 2003, Journal of the American Chemical Society.

[120]  Chun-Sing Lee,et al.  Electrical properties of zinc oxide nanowires and intramolecular p–n junctions , 2003 .

[121]  Positional dependence of optical absorption in silicon nanostructure , 2001 .

[122]  P. Ajayan,et al.  Nanotubes in a flash--ignition and reconstruction. , 2002, Science.

[123]  Shui-Tong Lee,et al.  SiO2-enhanced synthesis of Si nanowires by laser ablation , 1998 .

[124]  T. Katsuyama,et al.  Size, position and direction control on GaAs and InAs nanowhisker growth☆ , 1998 .

[125]  S. Senz,et al.  Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.

[126]  U. Gösele,et al.  A model for growth directional features in silicon nanowires , 2002 .

[127]  C. Kisielowski,et al.  Bicrystalline hematite nanowires. , 2005, The journal of physical chemistry. B.

[128]  Jin-Sil Choi,et al.  Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. , 2006, Angewandte Chemie.

[129]  J. Zuo,et al.  Induced growth of asymmetric nanocantilever arrays on polar surfaces. , 2003, Physical review letters.

[130]  C. Balasubramanian,et al.  Experimental imaging of silicon nanotubes , 2005 .

[131]  Lei Liu,et al.  Magic Numbers in Silicon Dioxide-Based Clusters , 2000 .

[132]  Xinsheng Peng,et al.  Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires , 2002 .

[133]  Peidong Yang,et al.  Low-temperature wafer-scale production of ZnO nanowire arrays. , 2003, Angewandte Chemie.

[134]  Lai‐Sheng Wang,et al.  Small silicon oxide clusters: chains and rings , 1997 .

[135]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[136]  Mansoo Choi,et al.  Stability of elongated and compact types of structures in SiO 2 nanoparticles , 2002 .

[137]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[138]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[139]  Xiangfeng Duan,et al.  General Synthesis of Compound Semiconductor Nanowires , 2000 .

[140]  Shui-Tong Lee,et al.  Faceted Silicon Nanotubes: Structure, Energetic, and Passivation Effects , 2007 .

[141]  Ralf B. Wehrspohn,et al.  Highly ordered monocrystalline silver nanowire arrays , 2002 .

[142]  K. H. Chen,et al.  Catalytic growth and characterization of gallium nitride nanowires. , 2001, Journal of the American Chemical Society.

[143]  J. Chung,et al.  Light absorption of silica nanoparticles , 2001 .

[144]  K. Lew,et al.  Diameter dependent growth rate and interfacial abruptness in vapor-liquid-solid Si/Si1-xGex heterostructure nanowires. , 2008, Nano letters.

[145]  Chun-Sing Lee,et al.  Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature , 1998 .

[146]  Y.-W. Chen,et al.  Self‐Assembled Silicon Nanotubes Grown from Silicon Monoxide , 2005 .

[147]  Younan Xia,et al.  Crystalline Silver Nanowires by Soft Solution Processing , 2002 .

[148]  Friedhelm Bechstedt,et al.  Absolute surface energies of group-IV semiconductors: Dependence on orientation and reconstruction , 2002 .

[149]  Joan M. Redwing,et al.  Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates , 2003 .

[150]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[151]  R. Bartlett,et al.  Deformation and Fracture of a SiO2 Nanorod , 2003 .

[152]  N. Koshizaki,et al.  One-step growth of silica nanotubes and simultaneous filling with indium sulfide nanorods , 2004 .

[153]  Xavier Gonze,et al.  Concentration of small ring structures in vitreous silica from a first-principles analysis of the Raman spectrum. , 2003, Physical review letters.

[154]  Dapeng Yu,et al.  Optical properties of the ZnO nanotubes synthesized via vapor phase growth , 2003 .

[155]  Lixin Zhang,et al.  Structural transformation of ZnO nanostructures , 2007 .

[156]  Zhong Lin Wang,et al.  Bicrystalline zinc oxide nanowires , 2003 .

[157]  Joan M. Redwing,et al.  Template-directed vapor–liquid–solid growth of silicon nanowires , 2002 .

[158]  Ning Wang,et al.  Germanium nanowires sheathed with an oxide layer , 2000 .

[159]  Joan M. Redwing,et al.  Bicrystalline Silicon Nanowires , 2001 .

[160]  Younan Xia,et al.  Silver Nanowires Can Be Directly Coated with Amorphous Silica To Generate Well-Controlled Coaxial Nanocables of Silver/Silica , 2002 .

[161]  A. Govindaraj,et al.  Oxide nanotubes prepared using carbon nanotubes as templates , 1997 .

[162]  Shuhong Yu,et al.  Synthesis of uniform carbon@silica nanocables and luminescent silica nanotubes with well controlled inner diameters , 2006 .

[163]  Charles M. Lieber,et al.  Diameter-Selective Synthesis of Semiconductor Nanowires , 2000 .

[164]  B. Korgel,et al.  Supercritical Fluid–Liquid–Solid Synthesis of Gallium Arsenide Nanowires Seeded by Alkanethiol‐Stabilized Gold Nanocrystals , 2004 .

[165]  K. Raghavachari,et al.  Abinitio quantum chemical study of the dimerization of silicon monoxide , 1984 .

[166]  H. Schwarz,et al.  Neutralization-reionization mass spectrometry experiments confirm the predicted existence of cyclic silicon oxide (Si2O) and silicon nitride (Si2N) cluster molecules , 1993 .

[167]  Kyung-Sang Cho,et al.  Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. , 2005, Journal of the American Chemical Society.

[168]  S. Noor Mohammad,et al.  Growth of GaN nanowires by direct reaction of Ga with NH3 , 2001 .

[169]  Ning Wang,et al.  Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition , 2000 .

[170]  Ruiqin Q. Zhang,et al.  Stable tetrahedral structure of the silica cluster (SiO2)10 , 2004 .

[171]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[172]  Shui-Tong Lee,et al.  A simple large-scale synthesis of very long aligned silica nanowires , 2003 .

[173]  Teri W. Odom,et al.  Directed Growth of Ordered Arrays of Small‐Diameter ZnO Nanowires , 2004 .

[174]  Brian A. Korgel,et al.  Supercritical Fluid–Liquid–Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals , 2003 .

[175]  Xiao-Hua Zhang,et al.  Structural and electronic properties of ZnO nanotubes from density functional calculations , 2007 .

[176]  Deyu Li,et al.  Fabrication of silica nanotube arrays from vertical silicon nanowire templates. , 2003, Journal of the American Chemical Society.

[177]  Kenji Hiruma,et al.  Growth and optical properties of nanometer‐scale GaAs and InAs whiskers , 1995 .

[178]  W. K. Burton,et al.  Role of Dislocations in Crystal Growth , 1949, Nature.

[179]  G. Guo,et al.  Systematic ab initio study of the optical properties of BN nanotubes , 2005 .

[180]  J. Robertson,et al.  Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy , 2005 .

[181]  C. Wang,et al.  Medium-sized silicon oxide clusters by Si3O3-ring assembly , 2003 .

[182]  W. Shinoda,et al.  Molecular dynamics simulations of self-organized polyicosahedral Si nanowire. , 2006, The Journal of chemical physics.

[183]  Catherine J. Murphy,et al.  An Improved Synthesis of High‐Aspect‐Ratio Gold Nanorods , 2003 .

[184]  A. Nozik,et al.  Synthesis and characterization of colloidal InP quantum rods , 2003 .

[185]  Zhong Lin Wang,et al.  Metal−Semiconductor Zn−ZnO Core−Shell Nanobelts and Nanotubes , 2004 .

[186]  Timothy J. Trentler,et al.  Solution−Liquid−Solid Growth of Indium Phosphide Fibers from Organometallic Precursors: Elucidation of Molecular and Nonmolecular Components of the Pathway , 1997 .

[187]  R. Q. Zhang,et al.  Investigation of possible structures of silicon nanotubes via density-functional tight-binding molecular dynamics simulations and ab initio calculations. , 2005, The journal of physical chemistry. B.

[188]  S. Russo,et al.  Structure and energetics of single-walled armchair and zigzag silicon nanotubes , 2003 .

[189]  Zu Rong Dai,et al.  Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation , 2003 .

[190]  Thomas Frauenheim,et al.  Stability and electronic structure of GaN nanotubes from density-functional calculations , 1999 .

[191]  Peidong Yang,et al.  The Chemistry and Physics of Semiconductor Nanowires , 2005 .

[192]  J. Simons,et al.  Ab initio study of the silicon oxide (Si2O and Si3O) molecules , 1993 .

[193]  J. Kang,et al.  Hypothetical silicon nanotubes under axial compression , 2003 .

[194]  Hans Söderlund,et al.  Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations , 2002, Science.

[195]  K. Fung,et al.  Site-Specific Deposition of Titanium Oxide on Zinc Oxide Nanorods , 2007 .

[196]  S. T. Lee,et al.  Silicon-silica nanowires, nanotubes, and biaxial nanowires: inside, outside, and side-by-side growth of silicon versus silica on zeolite. , 2003, Inorganic chemistry.

[197]  Volker Schmidt,et al.  Diameter-dependent growth direction of epitaxial silicon nanowires. , 2005, Nano letters.

[198]  Younan Xia,et al.  Welding and patterning in a flash , 2004, Nature materials.

[199]  C. Y. Wang,et al.  Synthesis of α–SiO_2 nanowires using Au nanoparticle catalysts on a silicon substrate , 2001 .

[200]  F. Stillinger,et al.  Structures and Energies of SiO 2 Clusters , 1996 .

[201]  U. Gösele,et al.  Silicon nanowhiskers grown on 〈111〉Si substrates by molecular-beam epitaxy , 2004 .

[202]  T. Schroeder EPITAXIAL GROWTH OF SiO2 ON Mo(112) , 2000 .

[203]  Yeshayahu Lifshitz,et al.  Oxide‐Assisted Growth of Semiconducting Nanowires , 2003 .

[204]  I. Sou,et al.  ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy , 2003 .

[205]  Shui-Tong Lee,et al.  Oxide-Assisted Semiconductor Nanowire Growth , 1999 .

[206]  L. Holland,et al.  Vacuum deposition of thin films , 1956 .

[207]  H. Gassen,et al.  A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane , 1971 .

[208]  M. Reed,et al.  Comparison of laser-ablation and hot-wall chemical vapour deposition techniques for nanowire fabrication , 2006 .

[209]  Harry E. Ruda,et al.  Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy , 2002 .

[210]  Kwang S. Kim,et al.  Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase , 2001, Science.

[211]  A. Weiss,et al.  Über Siliciumchalkogenide. VI. Zur Kenntnis der faserigen Siliciumdioxyd‐Modifikation , 1954 .

[212]  Zhong Lin Wang,et al.  Single-crystal nanocastles of ZnO , 2006 .

[213]  Madhu Menon,et al.  Nanomechanics of silicon nanowires , 2004 .

[214]  L. Hench,et al.  Effect of basis set and of electronic correlation on ab initio calculations on silica rings , 2000 .

[215]  S. Shinkai,et al.  Preparation of Mesoscale and Macroscale Silica Nanotubes Using a Sugar-Appended Azonaphthol Gelator Assembly , 2002 .

[216]  Shui-Tong Lee,et al.  Structural characterization of fully coordinated ultrathin silica nanotubes by first-principles calculations , 2006 .

[217]  Hui Chen,et al.  ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air , 2006 .

[218]  Hemant Adhikari,et al.  Germanium nanowire epitaxy: shape and orientation control. , 2006, Nano letters.

[219]  Yufeng Zhao,et al.  What is the ground-state structure of the thinnest Si nanowires? , 2003, Physical review letters.

[220]  Steven G. Louie,et al.  Quantum confinement and optical gaps in Si nanocrystals , 1997 .

[221]  G. Hass Preparation, Structure, and Applications of Thin Films of Silicon Monoxide and Titanium Dioxide , 1950 .

[222]  E. Samulski,et al.  Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. , 2004, Chemical communications.

[223]  A. Hagfeldt,et al.  Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO , 2001 .

[224]  S. Nayak,et al.  ATOMIC AND ELECTRONIC STRUCTURE OF NEUTRAL AND CHARGED SINOM CLUSTERS , 1998 .

[225]  Role of liquid droplet surface diffusion in the vapor‐liquid‐solid whisker growth mechanism , 1994 .

[226]  Ning Wang,et al.  Enhanced photothermal effect in Si nanowires , 2003 .

[227]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .

[228]  Martin F. Jarrold,et al.  Nanosurface Chemistry on Size-Selected Silicon Clusters , 1991, Science.

[229]  Ronaldo Mota,et al.  Ab initio calculations for a hypothetical material: Silicon nanotubes , 2000 .

[230]  J. Chelikowsky,et al.  Highest electron affinity as a predictor of cluster anion structures , 2002, Nature materials.

[231]  Hiroyuki Sakaki,et al.  Scattering Suppression and High-Mobility Effect of Size-Quantized Electrons in Ultrafine Semiconductor Wire Structures , 1980 .

[232]  S. T. Lee,et al.  Free-standing single crystal silicon nanoribbons. , 2001, Journal of the American Chemical Society.

[233]  Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes , 2005, cond-mat/0511274.

[234]  Y. Ohno,et al.  Silicon nanowhiskers grown on a hydrogen-terminated silicon {111} surface , 1998 .

[235]  Zhong Lin Wang,et al.  Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts , 2003 .

[236]  Yingbo Zhang,et al.  Quantum interference effect in single Pt(Ga)∕C nanowire , 2005 .

[237]  R. Ma,et al.  Investigation on the Growth of Boron Carbide Nanowires , 2002 .

[238]  Joshua E. Goldberger,et al.  Watching GaN Nanowires Grow , 2003 .

[239]  H. Takikawa,et al.  SYNTHESIS OF SILICON OXIDE NANOFIBERS BY SUBLIMATION OF SIC IN MEDIUM VACUUM WITH OXYGEN FLOW , 1999 .

[240]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[241]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[242]  Ji‐Guang Zhang,et al.  Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers , 2002 .

[243]  Jing Zhu,et al.  Synthesis of thin Si whiskers (nanowires) using SiCl4 , 2001 .

[244]  Ting Zhu,et al.  Computer Modeling Study of the Effect of Hydration on the Stability of a Silica Nanotube , 2003 .

[245]  Andreas Kornowski,et al.  Self-assembly of ZnO: from nanodots to nanorods. , 2002, Angewandte Chemie.

[246]  Martin Müller,et al.  Redox-Active Nanotubes of Vanadium Oxide. , 1998, Angewandte Chemie.

[247]  Wen-Wei Wu,et al.  Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-NiSi/Si , 2007 .

[248]  Chia-Chun Chen,et al.  Large‐Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires , 2000 .

[249]  Hongbin Wu,et al.  Si3Oy (y = 1-6) clusters: Models for oxidation of silicon surfaces and defect sites in bulk oxide materials , 1997 .

[250]  Sau-wan Cheng,et al.  Temperature profile and pressure effect on the growth of silicon nanowires , 2004 .

[251]  S. Bromley,et al.  A new interatomic potential for nanoscale silica , 2003 .

[252]  A. E. Wetsel,et al.  Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. , 1988, Physical review letters.

[253]  B. Marsen,et al.  Fullerene-structured nanowires of silicon , 1999 .

[254]  Ruiqin Q. Zhang,et al.  Silicon nanotubes: Why not? , 2002 .

[255]  Anthony K. Cheetham,et al.  The Chemistry of Nanomaterials: Synthesis, Properties and Applications , 2004 .

[256]  Cesare Soci,et al.  Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. , 2007, Nano letters.

[257]  B. Korgel,et al.  Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. , 2002, Journal of the American Chemical Society.

[258]  Zhong Lin Wang,et al.  Silica Nanotubes and Nanofiber Arrays , 2000 .

[259]  Rongming Wang,et al.  Nanotubular structures of zinc oxide , 2004 .

[260]  H. Cheung,et al.  Geometric and Electronic Structures of Silicon Oxide Clusters , 2001 .

[261]  P. Sheng,et al.  A novel carbon nanotube structure formed in ultra-long nanochannels of anodic aluminum oxide templates. , 2006, The journal of physical chemistry. B.

[262]  U. Gösele,et al.  On the thermodynamic size limit of nanowires grown by the vapor-liquid-solid process , 2004 .

[263]  B. Zhang,et al.  Cluster generation from doped silica aerogels by XeCl excimer laser ablation , 1996 .

[264]  Lars Samuelson,et al.  Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. , 2005, Nano letters.

[265]  B. Korgel,et al.  Catalytic solid-phase seeding of silicon nanowires by nickel nanocrystals in organic solvents. , 2005, Nano letters.

[266]  Xingcai Wu,et al.  Preparation and photoluminescence properties of amorphous silica nanowires , 2001 .

[267]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[268]  H. Mao,et al.  Formation and structure of a dense octahedral glass. , 2004, Physical review letters.

[269]  H. Takei,et al.  Crystallization of fine silicon particles from silicon monoxide , 2002 .

[270]  R. Ruoff,et al.  Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method , 1998 .

[271]  Younan Xia,et al.  Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence , 2003 .

[272]  H. Tan,et al.  Evolution of InAs branches in InAs/GaAs nanowire heterostructures , 2007 .

[273]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[274]  Ruiqin Q. Zhang,et al.  Density-functional theory calculations of bare and passivated triangular-shaped ZnO nanowires , 2007 .

[275]  W. Buhro,et al.  Solution–Liquid–Solid Growth of Soluble GaAs Nanowires , 2003 .

[276]  Ning Wang,et al.  Si nanowires grown from silicon oxide , 1999 .

[277]  D. Oh,et al.  STABILITY AND CAP FORMATION MECHANISM OF SINGLE-WALLED CARBON NANOTUBES , 1998 .

[278]  S. Kodambaka,et al.  Germanium Nanowire Growth Below the Eutectic Temperature , 2007, Science.

[279]  K. Johnston,et al.  Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate , 2003 .

[280]  Younan Xia,et al.  Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium , 2002 .

[281]  Shui-Tong Lee,et al.  Metal silicide/silicon nanowires from metal vapor vacuum arc implantation , 2002 .

[282]  H. Schwarz,et al.  Gas-phase characterization of the neutral and cationic Si2O2 molecules. A combined experimental and ab initio study , 1994 .

[283]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004, Nature.

[284]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[285]  K. Inukai,et al.  Synthesis of single silica nanotubes in the presence of citric acid , 2001 .

[286]  James R. Chelikowsky,et al.  Structural and electronic properties of neutral and charged silicalike clusters , 1998 .

[287]  Edwin Flikkema,et al.  Dedicated Global Optimization Search for Ground State Silica Nanoclusters: (SiO2)N (N = 6−12) , 2004 .

[288]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[289]  W. Qian,et al.  Nanoscale silicon wires synthesized using simple physical evaporation , 1998 .

[290]  Zhiyong Fan,et al.  Photoluminescence and polarized photodetection of single ZnO nanowires , 2004 .

[291]  D. Zhang,et al.  A structural model of one-dimensional thin silica nanowires , 2004 .

[292]  Yi Cui,et al.  Controlled Growth and Structures of Molecular-Scale Silicon Nanowires , 2004 .