A proximity-based surrogate-assisted method for simulation-based design optimization of a cylinder head water jacket

Many engineering design problems are associated with computationally expensive and time-consuming simulations for design evaluation. In such problems, each candidate design should be selected caref...

[1]  Xiaodong Li,et al.  Seeking Multiple Solutions: An Updated Survey on Niching Methods and Their Applications , 2017, IEEE Transactions on Evolutionary Computation.

[2]  Zhonghua Han,et al.  Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models , 2016, Structural and Multidisciplinary Optimization.

[3]  Alexander I. J. Forrester,et al.  Engineering design applications of surrogate-assisted optimization techniques , 2014 .

[4]  Jinglai Wu,et al.  Modeling and Multi-Objective Optimization of Double Suction Centrifugal Pump Based on Kriging Meta-models , 2015 .

[5]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[6]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[7]  Saúl Zapotecas Martínez,et al.  A multi-objective meta-model assisted memetic algorithm with non gradient-based local search , 2010, GECCO '10.

[8]  Taimoor Akhtar,et al.  Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection , 2016, J. Glob. Optim..

[9]  Hisao Ishibuchi,et al.  How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison , 2018, Evolutionary Computation.

[10]  Xin-She Yang,et al.  Solving Computationally Expensive Engineering Problems: Methods and Applications , 2014 .

[11]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[12]  Saúl Zapotecas Martínez,et al.  MOEA/D assisted by rbf networks for expensive multi-objective optimization problems , 2013, GECCO '13.

[13]  P. Bouillard,et al.  Hierarchical stochastic metamodels based on moving least squares and polynomial chaos expansion , 2011 .

[14]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[15]  Kaisa Miettinen,et al.  A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms , 2017, Soft Computing.

[16]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[17]  Selvakumar Ulaganathan,et al.  Surrogate Models for Aerodynamic Shape Optimisation , 2013 .

[18]  Tapabrata Ray,et al.  A Multiple Surrogate Assisted Decomposition-Based Evolutionary Algorithm for Expensive Multi/Many-Objective Optimization , 2019, IEEE Transactions on Evolutionary Computation.

[19]  Russell R. Boyce,et al.  Nozzle design optimization for axisymmetric scramjets by using surrogate-assisted evolutionary algorithms , 2012 .

[20]  Luís Santos,et al.  Aircraft Air Inlet Design Optimization via Surrogate-Assisted Evolutionary Computation , 2015, EMO.

[21]  Stephen J. Leary,et al.  A parallel updating scheme for approximating and optimizing high fidelity computer simulations , 2004 .

[22]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007 .

[23]  Bernhard Sendhoff,et al.  Individual-based Management of Meta-models for Evolutionary Optimization with Application to Three-Dimensional Blade Optimization , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[24]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[25]  Yuansheng Cheng,et al.  Balancing global and local search in parallel efficient global optimization algorithms , 2017, J. Glob. Optim..

[26]  Kalyanmoy Deb,et al.  A Taxonomy for Metamodeling Frameworks for Evolutionary Multiobjective Optimization , 2019, IEEE Transactions on Evolutionary Computation.

[27]  Hisao Ishibuchi,et al.  Comparison of Hypervolume, IGD and IGD+ from the Viewpoint of Optimal Distributions of Solutions , 2019, EMO.

[28]  Thomas Bartz-Beielstein,et al.  Open Issues in Surrogate-Assisted Optimization , 2020, High-Performance Simulation-Based Optimization.

[29]  Juliane Müller MISO: mixed-integer surrogate optimization framework , 2016 .

[30]  Juliane Müller,et al.  SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems , 2017, INFORMS J. Comput..

[31]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[32]  Douglas H. Werner,et al.  Multi-objective surrogate-assisted optimization applied to patch antenna design , 2017, 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[33]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[34]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[35]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[36]  Kalyanmoy Deb,et al.  Multimodal Optimization by Covariance Matrix Self-Adaptation Evolution Strategy with Repelling Subpopulations , 2017, Evolutionary Computation.

[37]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[38]  V. Roshan Joseph,et al.  Space-filling designs for computer experiments: A review , 2016 .

[39]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[40]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..