A Review of Forty Years of Distributed Estimation

This paper reviews forty years of distributed estimation research since the first papers on decentralized filtering appeared in 1978. Starting with a formulation of the problem, it reviews the assumptions and objectives of the main approaches, including information decorrelation, cross-covariance fusion, channel filters, covariance intersection, maximum a posteriori probability fusion, best linear unbiased estimate, and distributed Kalman filters based on pseudo estimates and augmented state estimates. It also reviews algorithms motivated by sensor networks with flexible communication including consensus and diffusion filters. Suggestions for future research are provided.

[1]  Guoqing Wang,et al.  Diffusion distributed Kalman filter over sensor networks without exchanging raw measurements , 2017, Signal Process..

[2]  Felix Govaers,et al.  Comparison of augmented state track fusion methods for non-full-rate communication , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[3]  Keshu Zhang,et al.  Best Linear Unbiased Estimation Fusion with Constraints , 2003 .

[4]  H. F. Durrant-Whyte,et al.  Fully decentralised algorithm for multisensor Kalman filtering , 1991 .

[5]  Alexander Charlish,et al.  On the decorrelated distributed Kalman filter under measurement origin uncertainty , 2012, 2012 15th International Conference on Information Fusion.

[6]  Zhansheng Duan,et al.  The optimality of a class of distributed estimation fusion algorithm , 2008, 2008 11th International Conference on Information Fusion.

[7]  Chee-Yee Chong Graphical Models for Nonlinear Distributed Estimation , 2004 .

[8]  X. R. Li,et al.  Unified optimal linear estimation fusion. II. Discussions and examples , 2000, Proceedings of the Third International Conference on Information Fusion.

[9]  Ali H. Sayed,et al.  Diffusion Strategies Outperform Consensus Strategies for Distributed Estimation Over Adaptive Networks , 2012, IEEE Transactions on Signal Processing.

[10]  Tian Zhi,et al.  Performance Evaluation of Track Fusion with Information , 2002 .

[11]  X. R. Li,et al.  Optimal Linear Estimation Fusion — Part IV : Optimality and Efficiency of Distributed Fusion , 2001 .

[12]  Uwe D. Hanebeck,et al.  The Hypothesizing Distributed Kalman Filter , 2012, 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI).

[13]  N. A. Carlson Federated square root filter for decentralized parallel processors , 1990 .

[14]  Kuo-Chu Chang,et al.  Information Fusion in Distributed Sensor Networks , 1985, 1985 American Control Conference.

[15]  Sumit Roy,et al.  Decentralized structures for parallel Kalman filtering , 1988 .

[16]  Kuo-Chu Chang,et al.  Architectures and algorithms for track association and fusion , 2000 .

[17]  Giorgio Battistelli,et al.  Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability , 2014, Autom..

[18]  Hugh Durrant-Whyte Data fusion in sensor networks , 2005 .

[19]  Jeffrey K. Uhlmann,et al.  Scalable distributed data fusion , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[20]  Shozo Mori,et al.  Adaptive distributed estimation , 1987, 26th IEEE Conference on Decision and Control.

[21]  Ruggero Carli,et al.  Distributed Kalman filtering based on consensus strategies , 2008, IEEE Journal on Selected Areas in Communications.

[22]  R. Saha,et al.  An efficient algorithm for multisensor track fusion , 1998 .

[23]  A. Willsky,et al.  Combining and updating of local estimates and regional maps along sets of one-dimensional tracks , 1982 .

[24]  R. Olfati-Saber,et al.  Distributed Kalman Filter with Embedded Consensus Filters , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[25]  Chee-Yee Chong,et al.  Optimal fusion for non-zero process noise , 2013, Proceedings of the 16th International Conference on Information Fusion.

[26]  Chongzhao Han,et al.  Optimal linear estimation fusion .I. Unified fusion rules , 2003, IEEE Trans. Inf. Theory.

[27]  Felix Govaers,et al.  On Accumulated State Densities with applications to out-of-sequence measurement processing , 2009, 2009 12th International Conference on Information Fusion.

[28]  Chee-Yee Chong,et al.  Sensor networks: evolution, opportunities, and challenges , 2003, Proc. IEEE.

[29]  M. F. Hassan,et al.  A decentralized computational algorithm for the global Kalman filter , 1978 .

[30]  Richard M. Murray,et al.  Approximate distributed Kalman filtering in sensor networks with quantifiable performance , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[31]  Petar M. Djuric,et al.  Sequential Estimation and Diffusion of Information Over Networks: A Bayesian Approach With Exponential Family of Distributions , 2017, IEEE Transactions on Signal Processing.

[32]  Kuo-Chu Chang,et al.  Weighted Kullback-Leibler average-based distributed filtering algorithm , 2015, Defense + Security Symposium.

[33]  Peng Zhang,et al.  Optimal linear estimation fusion - part VI: sensor data compression , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[34]  Giorgio Battistelli,et al.  Consensus-Based Linear and Nonlinear Filtering , 2015, IEEE Transactions on Automatic Control.

[35]  Yuan Gao,et al.  New approach to information fusion steady-state Kalman filtering , 2005, Autom..

[36]  José M. F. Moura,et al.  Consensus+Innovations Distributed Kalman Filter With Optimized Gains , 2016, IEEE Transactions on Signal Processing.

[37]  Y. Bar-Shalom On the track-to-track correlation problem , 1981 .

[38]  Ali H. Sayed,et al.  Diffusion Strategies for Distributed Kalman Filtering and Smoothing , 2010, IEEE Transactions on Automatic Control.

[39]  X. Rong Li Optimal linear estimation fusion-part VII: dynamic systems , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[40]  Oliver E. Drummond,et al.  Hybrid sensor fusion algorithm architecture and tracklets , 1997, Optics & Photonics.

[41]  Alexander Charlish,et al.  An exact solution to track-to-track fusion using accumulated state densities , 2013, 2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[42]  Felix Govaers,et al.  Comparison of tracklet fusion and distributed Kalman filter for track fusion , 2014, 17th International Conference on Information Fusion (FUSION).

[43]  Shu-Li Sun Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor , 2004, Autom..

[44]  Y. Bar-Shalom,et al.  On optimal track-to-track fusion , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[45]  Felix Govaers,et al.  On the globalized likelihood function for exact track-to-track fusion at arbitrary instants of time , 2011, 14th International Conference on Information Fusion.

[46]  Jeffrey K. Uhlmann,et al.  General data fusion for estimates with unknown cross covariances , 1996, Defense, Security, and Sensing.

[47]  Alexander Charlish,et al.  Covariance debiasing for the Distributed Kalman Filter , 2013, Proceedings of the 16th International Conference on Information Fusion.

[48]  Srikanta P. Kumar,et al.  SensIT: Sensor Information Technology For the Warfighter , 2001 .

[49]  S. Mori,et al.  Hierarchical Multitarget Tracking and Classification - A Bayesian Approach , 1984, 1984 American Control Conference.

[50]  David Nicholson,et al.  DDF : An Evaluation of Covariance Intersection , 2001 .

[51]  Stelios C. A. Thomopoulos,et al.  Distributed Fusion Architectures and Algorithms for Target Tracking , 1997, Proc. IEEE.

[52]  Felix Govaers,et al.  An Exact Solution to Track-to-Track-Fusion at Arbitrary Communication Rates , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[53]  R. Olfati-Saber,et al.  Consensus Filters for Sensor Networks and Distributed Sensor Fusion , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[54]  Chongzhao Han,et al.  Optimal Linear Estimation Fusion — Part I : Unified Fusion Rules , 2001 .

[55]  Hugh Durrant-Whyte,et al.  Communication In General Decentralised Filters And The Coordinated Search Strategy , 2004 .

[56]  Yunmin Zhu,et al.  The optimality for the distributed Kalman filtering fusion with feedback , 2001, Autom..

[57]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[58]  Oliver E. Drummond,et al.  Feedback in track fusion without process noise , 1995, Optics & Photonics.

[59]  Chee-Yee Chong,et al.  Track association and track fusion with nondeterministic target dynamics , 2002 .

[60]  Jason Speyer,et al.  Computation and transmission requirements for a decentralized linear-quadratic-Gaussian control problem , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[61]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[62]  Jeffrey K. Uhlmann,et al.  A non-divergent estimation algorithm in the presence of unknown correlations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[63]  K. Dynamic Map Building and Localization : New Theoretical Foundations , 2015 .

[64]  Magdi S. Mahmoud,et al.  Distributed Kalman filtering: a bibliographic review , 2013 .

[65]  Shu-Li Sun,et al.  Multi-sensor optimal information fusion Kalman filter , 2004, Autom..

[66]  Marcelo G. S. Bruno,et al.  A Bayesian Interpretation of Distributed Diffusion Filtering Algorithms [Lecture Notes] , 2018, IEEE Signal Processing Magazine.

[67]  David L. Hall,et al.  Essence of Distributed Target Tracking : Track Fusion and Track Association , 2017 .

[68]  Giorgio Battistelli,et al.  Consensus-based algorithms for distributed filtering , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[69]  S. Grime,et al.  Data fusion in decentralized sensor networks , 1994 .

[70]  Uwe D. Hanebeck,et al.  Advances in hypothesizing distributed Kalman filtering , 2013, Proceedings of the 16th International Conference on Information Fusion.

[71]  Chee-Yee Chong,et al.  Track association using augmented state estimates , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[72]  Michael Athans,et al.  Survey of decentralized control methods for large scale systems , 1978 .

[73]  Reza Olfati-Saber,et al.  Kalman-Consensus Filter : Optimality, stability, and performance , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[74]  Cishen Zhang,et al.  Diffusion Kalman Filtering Based on Covariance Intersection , 2012, IEEE Transactions on Signal Processing.

[75]  Chee-Yee Chong,et al.  Forty years of distributed estimation: A review of noteworthy developments , 2017, 2017 Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[76]  X. R. Li,et al.  Optimal Linear Estimation Fusion — Part III : Cross-Correlation of Local Estimation Errors , 2001 .

[77]  Anna Scaglione,et al.  Scalable distributed Kalman filtering through consensus , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[78]  Reza Olfati-Saber,et al.  Distributed Kalman filtering for sensor networks , 2007, 2007 46th IEEE Conference on Decision and Control.

[79]  Jie Xu,et al.  Optimal Distributed Kalman Filtering Fusion Algorithm Without Invertibility of Estimation Error and Sensor Noise Covariances , 2012, IEEE Signal Processing Letters.

[80]  Wolfgang Koch Exact update formulae for distributed Kalman filtering and retrodiction at arbitrary communication rates , 2009, 2009 12th International Conference on Information Fusion.

[81]  Yunmin Zhu,et al.  Optimal linear estimation fusion. Part V. Relationships , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[82]  Felix Govaers,et al.  Distributed Kalman filter fusion at arbitrary instants of time , 2010, 2010 13th International Conference on Information Fusion.

[83]  Mark E. Campbell,et al.  Distributed Data Fusion: Neighbors, Rumors, and the Art of Collective Knowledge , 2016, IEEE Control Systems.

[84]  Kuo-Chu Chang,et al.  Essence of Distributed Target Tracking: Track Fusion and Track Association , 2012 .

[85]  Yunmin Zhu,et al.  Optimal Kalman filtering fusion with cross-correlated sensor noises , 2007, Autom..

[86]  Yaakov Bar-Shalom,et al.  The Effect of the Common Process Noise on the Two-Sensor Fused-Track Covariance , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[87]  Huosheng Hu,et al.  Toward a fully decentralized architecture for multi-sensor data fusion , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[88]  Yunmin Zhu,et al.  Unified optimal linear estimation fusion. I. Unified models and fusion rules , 2000, Proceedings of the Third International Conference on Information Fusion.

[89]  Felix Govaers,et al.  On decorrelated track-to-track fusion based on Accumulated State Densities , 2014, 17th International Conference on Information Fusion (FUSION).

[90]  Michael Athans,et al.  ON DECENTRALIZED ESTIMATION AND CONTROL WITH APPLICATION TO FREEWAY RAMP METERING , 1978 .