An artificial fish swarm algorithm based hyperbolic augmented Lagrangian method

This paper aims to present a hyperbolic augmented Lagrangian (HAL) framework with guaranteed convergence to an @e-global minimizer of a constrained nonlinear optimization problem. The bound constrained subproblems that emerge at each iteration k of the framework are solved by an improved artificial fish swarm algorithm. Convergence to an @e^k-global minimizer of the HAL function is guaranteed with probability one, where @e^k->@e as k->~. Preliminary numerical experiments show that the proposed paradigm compares favorably with other penalty-type methods.

[1]  Hezhi Luo,et al.  Convergence properties of augmented Lagrangian methods for constrained global optimization , 2008, Optim. Methods Softw..

[2]  Kalyanmoy Deb,et al.  A genetic algorithm based augmented Lagrangian method for constrained optimization , 2012, Comput. Optim. Appl..

[3]  José Mario Martínez,et al.  Global minimization using an Augmented Lagrangian method with variable lower-level constraints , 2010, Math. Program..

[4]  José Mario Martínez,et al.  Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization , 2011, Computational Optimization and Applications.

[5]  Yong Wang,et al.  Optimal Multiuser Detection with Artificial Fish Swarm Algorithm , 2007, ICIC.

[6]  Duan Li,et al.  Unified theory of augmented Lagrangian methods for constrained global optimization , 2009, J. Glob. Optim..

[7]  Garrison W. Greenwood,et al.  Convergence in Evolutionary Programs with Self-Adaptation , 2001, Evolutionary Computation.

[8]  Ana Maria A. C. Rocha,et al.  Novel Fish Swarm Heuristics for Bound Constrained Global Optimization Problems , 2011, ICCSA.

[9]  Edite M. G. P. Fernandes,et al.  Numerical study of augmented Lagrangian algorithms for constrained global optimization , 2011 .

[10]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[11]  Gianni Di Pillo,et al.  An approach to constrained global optimization based on exact penalty functions , 2012, J. Glob. Optim..

[12]  Clóvis C. Gonzaga,et al.  A nonlinear programming algorithm based on non-coercive penalty functions , 2003, Math. Program..

[13]  Helio J. C. Barbosa,et al.  An adaptive constraint handling technique for differential evolution with dynamic use of variants in engineering optimization , 2011 .

[14]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[15]  X. Q. Yang,et al.  Augmented Lagrangian functions for constrained optimization problems , 2012, J. Glob. Optim..

[16]  Ana Maria A. C. Rocha,et al.  An augmented Lagrangian fish swarm based method for global optimization , 2011, J. Comput. Appl. Math..

[17]  Adel Nadjaran Toosi,et al.  Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications , 2012, Artificial Intelligence Review.

[18]  Jiann-Horng Lin,et al.  Evolutionary computation of unconstrained and constrained problems using a novel momentum-type particle swarm optimization , 2007 .

[19]  A. E. Xavier Hyperbolic penalty: a new method for nonlinear programming with inequalities , 2001 .

[20]  Lino A. Costa,et al.  A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization , 2012, Appl. Math. Comput..

[21]  J. Zhuang,et al.  A computational study on different penalty approaches for solving constrained global optimization problems with the electromagnetism-like method , 2014 .

[22]  M. M. Ali,et al.  A penalty function-based differential evolution algorithm for constrained global optimization , 2012, Computational Optimization and Applications.

[23]  Michael N. Vrahatis,et al.  Memetic particle swarm optimization , 2007, Ann. Oper. Res..