Ligand K-edge x-ray absorption spectroscopy: Covalency of ligand-metal bonds

Abstract The ligand K-edge probes the ligand 1s → valence np transitions. These transitions acquire intensity when the ligand is bound to an open shell metal ion. This intensity quantifies the amount of ligand character in the metal d orbitals, hence the covalency of the ligand–metal bond. In this review the methodology is developed and applied to copper proteins, iron–sulfur sites and nickel dithiolene complexes, as examples. These illustrate the power and impact of this method in evaluating covalency contributions to electron transfer pathways, reduction potentials, H-bond interactions, electron delocalization in mixed-valent systems and small molecule reactivity.

[1]  J. Guss,et al.  Structure of oxidized poplar plastocyanin at 1.6 A resolution. , 1983, Journal of molecular biology.

[2]  K. Hodgson,et al.  S K-edge X-ray absorption studies of tetranuclear iron-sulfur clusters: mu-sulfide bonding and its contribution to electron delocalization. , 2001, Journal of the American Chemical Society.

[3]  E. Duin,et al.  Biological and Synthetic [Fe3S4] Clusters , 1999 .

[4]  M. Chance,et al.  Iron L-Edge X-ray Absorption Spectroscopy of Myoglobin Complexes and Photolysis Products , 1997 .

[5]  K. Hodgson,et al.  Ligand K-edge X-ray absorption spectroscopic studies. Metal-ligand covalency in a series of transition metal tetrachlorides , 1995 .

[6]  Edward I. Solomon,et al.  Structural and Functional Aspects of Metal Sites in Biology. , 1996, Chemical reviews.

[7]  Robert K Szilagyi,et al.  Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. , 2004, Chemical reviews.

[8]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[9]  P. Bertrand,et al.  Contribution of the exchange interactions to the redox properties of the [2Fe-2S] ferredoxins. , 1982, Biochimica et biophysica acta.

[10]  M. Hall,et al.  How electron flow controls the thermochemistry of the addition of olefins to nickel dithiolenes: predictions by density functional theory. , 2002, Journal of the American Chemical Society.

[11]  K. Hagen,et al.  Synthetic routes to iron sulfide (Fe2S2, Fe3S4, Fe4S4, and Fe6S9), clusters from the common precursor tetrakis(ethanethiolate)ferrate(2-) ion ([Fe(SC2H5)4]2-): structures and properties of [Fe3S4(SR)4]3- and bis(ethanethiolate)nonathioxohexaferrate(4-) ion ([Fe6S9(SC2H5)2]4-), examples of the newest , 1983 .

[12]  A. Maki,et al.  Electronic ground state of bis (maleonitrile-dithiolene)nickel monoanion. Sulfur-33 hyperfine interaction , 1968 .

[13]  Robert K Szilagyi,et al.  Electronic structure and its relation to function in copper proteins. , 2002, Current opinion in chemical biology.

[14]  Michael G. Hill,et al.  Backbone-Engineered High-Potential Iron Proteins: Effects of Active-Site Hydrogen Bonding on Reduction Potential , 2000 .

[15]  Evert Jan Baerends,et al.  Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region , 2001 .

[16]  J. Moura,et al.  Moessbauer study of D. gigas ferredoxin II and spin-coupling model for Fe3S4 cluster with valence delocalization , 1987 .

[17]  W. Eberhardt Applications of Synchrotron Radiation , 1995 .

[18]  K. Hodgson,et al.  A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes , 1997 .

[19]  Sebastian Doniach,et al.  Observation of an electric quadrupole transition in the X-ray absorption spectrum of a Cu(II) complex , 1982 .

[20]  Stephen V. Didziulis,et al.  Variable photon energy photoelectron spectroscopic studies of copper chlorides: an experimental probe of metal-ligand bonding and changes in electronic structure on ionization , 1988 .

[21]  Clarence Zener,et al.  Interaction between the d -Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure , 1951 .

[22]  E. Solomon,et al.  Variable-energy photoelectron spectroscopic comparison of the bonding in ferric sulfide and ferric chloride: an alternative description of the near-IR-visible spin-forbidden transitions in high-spin d5 complexes , 1990 .

[23]  F. Neese,et al.  Theoretical evidence for the singlet diradical character of square planar nickel complexes containing two o-semiquinonato type ligands. , 2002, Inorganic chemistry.

[24]  Michael K. Johnson,et al.  SPECTROSCOPIC EVIDENCE FOR A REDUCED FE2S2 CLUSTER WITH A S = 9/2 GROUND STATE IN MUTANT FORMS OF CLOSTRIDIUM PASTEURIANUM 2FE FERREDOXIN , 1995 .

[25]  Jason A. Halfen,et al.  Structural Characterization of the First Example of a Bis(μ-thiolato)dicopper(II) Complex, Relevance to Proposals for the Electron Transfer Sites in Cytochrome c Oxidase and Nitrous Oxide Reductase , 1995 .

[26]  R. Cammack,et al.  Antiferromagnetic exchange interaction in the two-iron-two-sulphur ferredoxin from the blue-green alga Spirulina maxima studied with a highly sensitive magnetic balance. , 1980, Biochimica et biophysica acta.

[27]  B. Hoffman,et al.  Ligand spin densities in blue copper proteins by q-band proton and nitrogen-14 ENDOR spectroscopy , 1991 .

[28]  K. Hodgson,et al.  Ligand K-edge X-ray absorption spectroscopy: a direct probe of ligand-metal covalency. , 2000, Accounts of chemical research.

[29]  J. Avery The quantum theory of atoms, molecules and photons , 1972 .

[30]  Edward I. Solomon,et al.  X-ray absorption spectroscopic studies of the blue copper site: Metal and ligand K-edge studies to probe the origin of the EPR hyperfine splitting in plastocyanin , 1993 .

[31]  J. Pilbrow,et al.  Transition Ion Electron Paramagnetic Resonance , 1990 .

[32]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[33]  E. Solomon,et al.  Single-crystal spectral studies of Fe(SR)4- [R = 2,3,5,6,-(Me)4C6H]: the electronic structure of the ferric tetrathiolate active site , 1990 .

[34]  J. Girerd Electron transfer between magnetic ions in mixed valence binuclear systems , 1983 .

[35]  John E. Carpenter,et al.  Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure , 1988 .

[36]  K. Hodgson,et al.  Investigation of the Electronic Structure of 2Fe−2S Model Complexes and the Rieske Protein Using Ligand K-Edge X-ray Absorption Spectroscopy , 1999 .

[37]  H. Heering,et al.  Influence of charge and polarity on the redox potentials of high-potential iron-sulfur proteins: evidence for the existence of two groups. , 1995, Biochemistry.

[38]  K. Wieghardt,et al.  Excited-State Distortions and Electron Delocalization in Mixed-Valence Dimers: Vibronic Analysis of the Near-IR Absorption and Resonance Raman Profiles of [Fe(2)(OH)(3)(tmtacn)(2)](2+). , 1996, Inorganic chemistry.

[39]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[40]  H. Beinert,et al.  Copper A of cytochrome c oxidase, a novel, long-embattled, biological electron-transfer site. , 1997, European journal of biochemistry.

[41]  K. Hodgson,et al.  A quantitative description of the ground-state wave function of Cu(A) by X-ray absorption spectroscopy: comparison to plastocyanin and relevance to electron transfer. , 2001, Journal of the American Chemical Society.

[42]  Kimmo Mattila,et al.  Crystal structure of nitrous oxide reductase from Paracoccus denitrificans at 1.6 A resolution. , 2003, The Biochemical journal.

[43]  William B. Tolman,et al.  A thiolate-bridged, fully delocalized mixed-valence dicopper(I,II) complex that models the CuA biological electron-transfer site , 1996 .

[44]  G. Schrauzer,et al.  Preparation, Reactions, and Structure of Bisdithio-α-diketone Complexes of Nickel, Palladium, and Platinum1,2 , 1965 .

[45]  Roald Hoffmann,et al.  Orbital interactions in metal dimer complexes , 1975 .

[46]  David Eisenberg,et al.  A missing link in cupredoxins: Crystal structure of cucumber stellacyanin at 1.6 Å resolution , 1996, Protein science : a publication of the Protein Society.

[47]  A. Balch,et al.  Complete Electron-Transfer Series of the [M-N4] Type , 1966 .

[48]  Quantum Effects in Electron-Transfer Reactions , 1981 .

[49]  H. Gray,et al.  The Myth of Nickel(III) and Nickel(IV) in Planar Complexes1 , 1965 .

[50]  K. Hodgson,et al.  Protein effects on the electronic structure of the [Fe4S4]2+ cluster in ferredoxin and HiPIP. , 2001, Journal of the American Chemical Society.

[51]  Evert Jan Baerends,et al.  Electronic structure, magnetic properties, ESR, and optical spectra for 2-iron ferredoxin models by LCAO-X.alpha. valence bond theory , 1984 .

[52]  B. Lim,et al.  Nickel dithiolenes revisited: structures and electron distribution from density functional theory for the three-member electron-transfer series [Ni(S2C2Me2)2]0,1-,2-. , 2001, Inorganic chemistry.

[53]  E. Solomon,et al.  Spectroscopic Calibration of Modern Density Functional Methods Using [CuCl4]2- , 2002 .

[54]  Susan L. Cohen,et al.  Spectroscopic and Theoretical Studies of the Unusual EPR Parameters of Distorted Tetrahedral Cupric Sites:' Correlations to X-ray Spectral Features of Core Levels , 1987 .

[55]  H. Schugar,et al.  Preparation and Characterization of [rac-5, 7, 7, 12, 14, 14, -Hexamethyl-1, 4, 8, 11-Tetraazocyclotetradecane]Copper(II) o-Mercaptobenzoate Hydrate, [Cu(tet b)(o-SC6H4CO2)].H2O, a Complex with a CuN4S (Mercaptide) Chromophore , 1979 .

[56]  Stephen H. Brown,et al.  Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution , 1998, Nature Structural Biology.

[57]  K. Wang,et al.  Toward separation and purification of olefins using dithiolene complexes: an electrochemical approach. , 2001, Science.

[58]  K. Hodgson,et al.  INVESTIGATION OF IRON-SULFUR COVALENCY IN RUBREDOXINS AND A MODEL SYSTEM USING SULFUR K-EDGE X-RAY ABSORPTION SPECTROSCOPY , 1998 .

[59]  A. Bearden,et al.  The two-iron ferredoxins in spinach, parsley, pig adrenal cortex, Azotobacter vinelandii, and Clostridium pasteurianum: studies by magnetic field Mössbauer spectroscopy. , 1971, Biochimica et biophysica acta.

[60]  Yi Lu,et al.  Spectroscopy of Mixed-Valence CuA-Type Centers: Ligand-Field Control of Ground-State Properties Related to Electron Transfer , 1998 .

[61]  R. Leeuwen,et al.  Exchange-correlation potential with correct asymptotic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[62]  K. Hodgson,et al.  Relationship between the Dipole Strength of Ligand Pre-Edge Transitions and Metal-Ligand Covalency. , 1999, Inorganic chemistry.

[63]  David A. Case,et al.  Broken symmetry analysis of spin coupling in iron-sulfur clusters , 1988 .

[64]  Ryszard J. Gurbiel,et al.  Detection of two histidyl ligands to CuA of cytochrome oxidase by 35-GHz ENDOR. 14,15N and 63,65Cu ENDOR studies of the CuA site in bovine heart cytochrome aa3 and cytochromes caa3 and ba3 from Thermus thermophilus , 1993 .

[65]  F. Neese,et al.  Probing the ground state of the purple mixed valence CuA center in nitrous oxide reductase: a CW ENDOR (X-band) study of the 65Cu, 15N-histidine labeled enzyme and interpretation of hyperfine couplings by molecular orbital calculations , 1998, JBIC Journal of Biological Inorganic Chemistry.

[66]  K. Hodgson,et al.  X-ray absorption edge spectroscopy of ligands bound to open-shell metal ions: Chlorine K-edge studies of covalency in CuCl sub 4 sup 2 minus , 1990 .

[67]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[68]  B. Trumpower,et al.  Alteration of the Midpoint Potential and Catalytic Activity of the Rieske Iron-Sulfur Protein by Changes of Amino Acids Forming Hydrogen Bonds to the Iron-Sulfur Cluster* , 1998, The Journal of Biological Chemistry.

[69]  K. Hodgson,et al.  Description of the ground state wave functions of Ni dithiolenes using sulfur K-edge X-ray absorption spectroscopy. , 2003, Journal of the American Chemical Society.

[70]  F. Tuczek Excited electronic states of transition-metal dimers and the VBCI model: an overview , 2001 .

[71]  J. Gaillard,et al.  Mutated forms of a [2Fe-2S] ferredoxin with serine ligands to the iron-sulfur cluster. , 1993, Biochemical and biophysical research communications.

[72]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[73]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[74]  Incorporating Protein Environments in Density Functional Theory: A Self-Consistent Reaction Field Calculation of Redox Potentials of [2Fe2S] Clusters in Ferredoxin and Phthalate Dioxygenase Reductase , 1998 .

[75]  J. Godden,et al.  The Structure of Copper-nitrite Reductase from Achromobacter cycloclastes at Five pH Values, with NO−2 Bound and with Type II Copper Depleted (*) , 1995, The Journal of Biological Chemistry.

[76]  T. Spiro Iron-sulfur proteins , 1982 .

[77]  R. P. Phizackerley,et al.  The structure of a phytocyanin, the basic blue protein from cucumber, refined at 1.8 A resolution. , 1996, Journal of molecular biology.

[78]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[79]  A. Gewirth,et al.  Vibrational mode structure and symmetry in proteins and analogs containing Fe4S4 clusters: resonance Raman evidence that HiPIP is tetrahedral while ferredoxin undergoes a D2d distortion , 1987 .

[80]  C. Cambillau,et al.  A novel type of catalytic copper cluster in nitrous oxide reductase , 2000, Nature Structural Biology.

[81]  N. Edelstein,et al.  Electron Paramagnetic Resonance Studies of the Electronic Structures of Bis(maleonitriledithiolato)copper(II), -nickel(III), -cobalt(II), and -rhodium(II) Complexes , 1964 .

[82]  K. Hodgson,et al.  Ligand K-edge x-ray absorption spectroscopy as a probe of ligand-metal bonding: Charge donation and covalency in copper-chloride systems , 1994 .

[83]  M. Newton,et al.  Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions , 1991 .

[84]  M K Johnson,et al.  Iron-sulfur proteins: new roles for old clusters. , 1998, Current opinion in chemical biology.

[85]  F. Capozzi,et al.  Experimental evidence for the role of buried polar groups in determining the reduction potential of metalloproteins: the S79P variant of Chromatium vinosum HiPIP , 1999, JBIC Journal of Biological Inorganic Chemistry.

[86]  E. Solomon,et al.  Spectroscopic studies on plastocyanin single crystals: a detailed electronic structure determination of the blue copper active site , 1981 .

[87]  E. Solomon,et al.  Copper L-edge spectral studies. A direct experimental probe of the ground-state covalency in the blue copper site in plastocyanin , 1993 .

[88]  Edward I. Solomon,et al.  Excited-State Contributions to Ground-State Properties of Mixed-Valence Dimers: Spectral and Electronic-Structural Studies of [Fe2(OH)3(tmtacn)2]2+ Related to the [Fe2S2]+ Active Sites of Plant-Type Ferredoxins , 1996 .

[89]  Edward I. Solomon,et al.  Electronic structure and bonding of the blue copper site in plastocyanin , 1985 .

[90]  I. Bertini,et al.  High-Field NMR Studies of Oxidized Blue Copper Proteins: The Case of Spinach Plastocyanin , 1999 .

[91]  K. R. Williams,et al.  LIGAND K-EDGE X-RAY ABSORPTION SPECTROSCOPIC STUDIES : METAL-LIGAND COVALENCY IN TRANSITION METAL TETRATHIOLATES , 1997 .

[92]  R. Greegor,et al.  Measurement of soft x-ray absorption spectra with a fluorescent ion chamber detector. Technical report , 1984 .

[93]  A. Wang,et al.  Structural basis of electron transfer modulation in the purple CuA center. , 1999, Biochemistry.

[94]  A. Gewirth,et al.  Electronic structure of the oxidized and reduced blue copper sites: contributions to the electron transfer pathway, reduction potential, and geometry☆ , 1996 .

[95]  Geneviève Blondin,et al.  Interplay of electron exchange and electron transfer in metal polynuclear complexes in proteins or chemical models , 1990 .

[96]  B. K. Agarwal,et al.  X-Ray Spectroscopy , 1979 .

[97]  B. Hoffman,et al.  Pulsed ENDOR and ESEEM Study of [Bis(maleonitriledithiolato)nickel](-): An Investigation into the Ligand Electronic Structure. , 1998, Inorganic chemistry.

[98]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[99]  Yusuke Yamada,et al.  Structure and Properties of [Fe(4)S(4){2,6-bis(acylamino)benzenethiolato-S}(4)](2)(-) and [Fe(2)S(2){2,6-bis(acylamino)benzenethiolato-S}(4)](2)(-): Protection of the Fe-S Bond by Double NH.S Hydrogen Bonds. , 1996, Inorganic chemistry.

[100]  K. Hodgson,et al.  Sulfur K-edge X-ray absorption spectroscopy of 2Fe-2S ferredoxin: covalency of the oxidized and reduced 2Fe forms and comparison to model complexes. , 2001, Journal of the American Chemical Society.

[101]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[102]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[103]  L. Que,et al.  X-ray Absorption Pre-Edge Studies of High-spin Iron(II) Complexes , 1995 .

[104]  K S Wilson,et al.  Atomic resolution (0.94 A) structure of Clostridium acidurici ferredoxin. Detailed geometry of [4Fe-4S] clusters in a protein. , 1997, Biochemistry.

[105]  R. Frankel,et al.  Evidence for the localized iron(III)/iron(II) oxidation state configuration as an intrinsic property of [Fe2S2(SR)4]3- clusters , 1981 .

[106]  G. Blondin,et al.  Double exchange and vibronic coupling in mixed valence systems. Origin of the broken-symmetry ground state of [Fe3S4]0 cores in proteins and models , 1993 .

[107]  E. Stern,et al.  X-ray filter assembly for fluorescence measurements of x-ray absorption fine structure. , 1979, The Review of scientific instruments.

[108]  R. H. Holm,et al.  The Cuboidal Fe3S4 Cluster: Synthesis, Stability, and Geometric and Electronic Structures in a Non-Protein Environment , 1996 .

[109]  H. Gray,et al.  The currents of life: the terminal electron-transfer complex of respiration. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[110]  E. Solomon,et al.  Active-site electronic structure contributions to electron-transfer pathways in rubredoxin and plastocyanin : direct versus superexchange , 1993 .

[111]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .

[112]  A. Warshel,et al.  Calculation of the redox potentials of iron-sulfur proteins: the 2-/3-couple of [Fe4S*4Cys4] clusters in Peptococcus aerogenes ferredoxin, Azotobacter vinelandii ferredoxin I, and Chromatium vinosum high-potential iron protein. , 1994, Biochemistry.

[113]  S. Denmark,et al.  Synthetic Analogs of the Active Sites of Iron-Sulfur Proteins. XI. Synthesis and Properties of Complexes Containing the Fe2S2 Core and the Structures of Bis[o-xylyl-α,α′-dithiolato-μ-sulfido-ferrate(III)] and Bis[p-tolylthiolato-μ-sulfido-ferrate(III)] Dianions , 1975 .

[114]  K. Morokuma,et al.  Application of the natural population analysis to transition-metal complexes. Should the empty metal p orbitals be included in the valence space? , 1992 .

[115]  E. L. Bominaar,et al.  Double Exchange and Vibronic Coupling in Mixed-Valence Systems. Electronic Structure of Exchange-Coupled Siroheme-[Fe4S4]2+ Chromophore in Oxidized E. Coli Sulfite Reductase , 1995 .

[116]  J. Ibers,et al.  Synthetic analogs of the active sites of iron-sulfur proteins. II. Synthesis and structure of the tetra(mercapto-m 3 -sulfido-iron) clusters, (Fe 4 S 4 (SR) 4 ) 2- . , 1973, Journal of the American Chemical Society.