Predicting Stress and Strain of FRP-Confined Square/Rectangular Columns Using Artificial Neural Networks

AbstractThis study proposes the use of artificial neural networks (ANNs) to calculate the compressive strength and strain of fiber reinforced polymer (FRP)–confined square/rectangular columns. Modeling results have shown that the two proposed ANN models fit the testing data very well. Specifically, the average absolute errors of the two proposed models are less than 5%. The ANNs were trained, validated, and tested on two databases. The first database contains the experimental compressive strength results of 104 FRP confined rectangular concrete columns. The second database consists of the experimental compressive strain of 69 FRP confined square concrete columns. Furthermore, this study proposes a new potential approach to generate a user-friendly equation from a trained ANN model. The proposed equations estimate the compressive strength/strain with small error. As such, the equations could be easily used in engineering design instead of the invisible processes inside the ANN.

[1]  Mark F. Green,et al.  COMPARISON OF CONFINEMENT MODELS FOR FIBER-REINFORCED POLYMER-WRAPPED CONCRETE , 2005 .

[2]  Hyo Seon Park,et al.  COUNTERPROPAGATION NEURAL NETWORKS IN STRUCTURAL ENGINEERING , 1995 .

[3]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[4]  Diego Andina,et al.  Application of Neural Networks , 2007 .

[5]  Sami F. Masri,et al.  Structure-unknown non-linear dynamic systems: identification through neural networks , 1992 .

[6]  Xu Lei,et al.  New Method of Strengthening Reinforced Concrete Square Columns by Circularizing and Wrapping with Fiber-Reinforced Polymer or Steel Straps , 2013 .

[7]  Muhammad N. S. Hadi,et al.  Normalized Confinement Stiffness Approach for Modeling FRP-Confined Concrete , 2012 .

[8]  Timothy Masters,et al.  Multilayer Feedforward Networks , 1993 .

[9]  James H. Garrett,et al.  Use of neural networks in detection of structural damage , 1992 .

[10]  A. Mirmiran,et al.  Effect of Column Parameters on FRP-Confined Concrete , 1998 .

[11]  Muhammad N. S Hadi,et al.  Behaviour of FRP wrapped normal strength concrete columns under eccentric loading , 2006 .

[12]  Muhammad N. S. Hadi,et al.  Stress Prediction Model for FRP Confined Rectangular Concrete Columns with Rounded Corners , 2014 .

[13]  Mehmet Ali Tasdemir,et al.  Evaluation of strains at peak stresses in concrete: A three-phase composite model approach , 1998 .

[14]  Yufei Wu,et al.  Unified Strength Model for Square and Circular Concrete Columns Confined by External Jacket , 2009 .

[15]  Fereidoun Amini,et al.  Neural Network for Structure Control , 1995 .

[16]  Ricardo Perera,et al.  Artificial intelligence techniques for prediction of the capacity of RC beams strengthened in shear with external FRP reinforcement , 2010 .

[17]  Alan Bundy,et al.  Artificial Intelligence Techniques , 1997, Springer Berlin Heidelberg.

[18]  Yufei Wu,et al.  Unified Strength Model Based on Hoek-Brown Failure Criterion for Circular and Square Concrete Columns Confined by FRP , 2010 .

[19]  Cem Demir,et al.  FRP Retrofit of Low and Medium Strength Circular and Rectangular Reinforced Concrete Columns , 2008 .

[20]  Hosein Naderpour,et al.  Prediction of FRP-confined compressive strength of concrete using artificial neural networks , 2010 .

[21]  Muhammad N. S Hadi,et al.  Comparative study of eccentrically loaded FRP wrapped columns , 2006 .

[22]  Ian Flood,et al.  Neural Networks in Civil Engineering. I: Principles and Understanding , 1994 .

[23]  Muhammad N. S. Hadi,et al.  Behaviour of eccentric loading of FRP confined fibre steel reinforced concrete columns , 2009 .

[24]  Muhammad N. S. Hadi,et al.  Axial and Flexural Performance of Square RC Columns Wrapped with CFRP under Eccentric Loading , 2012 .

[25]  Athanasios I. Karabinis,et al.  FRP-confined concrete members: Axial compression experiments and plasticity modelling , 2007 .

[26]  S F Masrit,et al.  Structure-unknown non-linear dynamic systems : identification through neural networks , 1991 .

[27]  Yu-Fei Wu,et al.  Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns , 2010 .

[28]  Muhammad N. S. Hadi,et al.  Strain Estimation of CFRP-Confined Concrete Columns Using Energy Approach , 2013 .

[29]  Belle R. Upadhyaya,et al.  Application of Neural Networks for Sensor Validation and Plant Monitoring , 1990 .

[30]  Muhammad N. S Hadi,et al.  The behaviour of FRP wrapped HSC columns under different eccentric loads , 2007 .

[31]  Jack A. Gilbert,et al.  Behavior of Large-Scale Rectangular Columns Confined with FRP Composites , 2010 .

[32]  Stephanie L. Walkup,et al.  Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures (ACI 440.2R-02) , 2005 .

[33]  Togay Ozbakkaloglu,et al.  FRP-confined concrete in circular sections: Review and assessment of stress-strain models , 2013 .

[34]  G C Lee,et al.  NEURAL NETWORKS TRAINED BY ANALYTICALLY SIMULATED DAMAGE STATES , 1993 .

[35]  Rakesh K. Kapania,et al.  Dynamic analysis and structural optimization of a fiber optic sensor using neural networks , 2006 .

[36]  Muhammad N. S. Hadi,et al.  Strengthening square reinforced concrete columns by circularisation and FRP confinement , 2013 .

[37]  J. Teng,et al.  Design-oriented stress–strain model for FRP-confined concrete , 2003 .

[38]  Prabhat Hajela,et al.  Neurobiological Computational Models in Structural Analysis and Design , 1990 .

[39]  Muhammad N. S Hadi Neural networks applications in concrete structures , 2003 .

[40]  Mns Hadi,et al.  EXTERNAL REINFORCEMENT OF HIGH STRENGTH CONCRETE COLUMNS , 2004 .

[41]  R. Perera,et al.  Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks , 2010 .

[42]  Muhammad N. S Hadi,et al.  Behaviour of FRP strengthened concrete columns under eccentric compression loading , 2007 .

[43]  T. Rousakis,et al.  Design-Oriented Strength Model for FRP-Confined Concrete Members , 2012 .

[44]  J. Teng,et al.  Design-Oriented Stress-Strain Model for FRP-Confined Concrete in Rectangular Columns , 2003 .

[45]  Ali Akbar Ramezanianpour,et al.  Strength enhancement modeling of concrete cylinders confined with CFRP composites using artificial neural networks , 2012 .

[46]  I. Shehata,et al.  Strength of short concrete columns confined with CFRP sheets , 2002 .