Synchronization Properties of Trees in the Kuramoto Model

We consider the Kuramoto model of coupled oscillators, specifically the case of tree networks, for which we prove a simple closed-form expression for the critical coupling. For several classes of tree, and for both uniform and Gaussian vertex frequency distributions, we provide tight closed-form bounds and empirical expressions for the expected value of the critical coupling. We also provide several bounds on the expected value of the critical coupling for all trees. Finally, we show that for a given set of vertex frequencies, there is a rearrangement of oscillator frequencies for which the critical coupling is bounded by the spread of frequencies.

[1]  Steven H. Strogatz,et al.  Sync: The Emerging Science of Spontaneous Order , 2003 .

[2]  G. Marsaglia,et al.  Evaluating Kolmogorov's distribution , 2003 .

[3]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[4]  P. Flajolet,et al.  The Maximum of a Random Walk and Its Application to Rectangle Packing , 1997 .

[5]  Lee DeVille,et al.  Fully synchronous solutions and the synchronization phase transition for the finite-N Kuramoto model. , 2011, Chaos.

[6]  Steven H. Strogatz,et al.  Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies , 1988 .

[7]  Oliver Mason,et al.  On Computing the Critical Coupling Coefficient for the Kuramoto Model on a Complete Bipartite Graph , 2009, SIAM J. Appl. Dyn. Syst..

[8]  Anthony H Dekker,et al.  Analyzing C2 Structures and Self-Synchronization with Simple Computational Models , 2011 .

[9]  J. L. Hemmen,et al.  Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators , 1993 .

[10]  A. Winfree The geometry of biological time , 1991 .

[11]  G. Weiss Aspects and Applications of the Random Walk , 1994 .

[12]  Anthony Dekker,et al.  Studying Organisational Topology with Simple Computational Models , 2007, J. Artif. Soc. Soc. Simul..

[13]  Anthony H. Dekker,et al.  Average distance as a predictor of synchronisability in networks of coupled oscillators , 2010, ACSC.

[14]  S. Majumdar,et al.  Precise asymptotics for a random walker’s maximum , 2005, cond-mat/0506195.

[15]  Oliver Mason,et al.  Global Phase-Locking in Finite Populations of Phase-Coupled Oscillators , 2007, SIAM J. Appl. Dyn. Syst..

[16]  A. Jadbabaie,et al.  On the stability of the Kuramoto model of coupled nonlinear oscillators , 2005, Proceedings of the 2004 American Control Conference.

[17]  Asser N. Tantawi,et al.  Asynchronous Disk Interleaving: Approximating Access Delays , 1991, IEEE Trans. Computers.

[18]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[19]  A. Kalloniatis,et al.  From incoherence to synchronicity in the network Kuramoto model. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[21]  Michael Chertkov,et al.  Synchronization in complex oscillator networks and smart grids , 2012, Proceedings of the National Academy of Sciences.

[22]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.