Manipulating electron redistribution of active sites by in situ engineering B-S-V bond in VS2 catalyst for stable nitrogen fixation

[1]  Liang Zhao,et al.  Enhanced Electrocatalytic Nitrogen Reduction Inspired by a Lightning Rod Effect on Urchin-Like Co3o4 Catalyst , 2022, SSRN Electronic Journal.

[2]  Hua Zhang,et al.  Preparation of Amorphous SnO2‐Encapsulated Multiphased Crystalline Cu Heterostructures for Highly Efficient CO2 Reduction , 2022, Advanced materials.

[3]  Hongbo Geng,et al.  Engineering multiphasic MoSe2/NiSe heterostructure interfaces for superior hydrogen production electrocatalysis , 2022, Applied Catalysis B: Environmental.

[4]  Xiaoxuan Wang,et al.  Surface Reconstruction with a Sandwich-like C/Cu/C Catalyst for Selective and Stable CO2 Electroreduction. , 2022, ACS applied materials & interfaces.

[5]  J. Crittenden,et al.  Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys , 2022, Applied Catalysis B: Environmental.

[6]  Y. Liu,et al.  Super-hydrophilic MgO/NiCo2S4 heterostructure for high-efficient oxygen evolution reaction in neutral electrolytes , 2022, Applied Catalysis B: Environmental.

[7]  Liang Zhao,et al.  In Operando Identification of V4+-Site-Dependent Nitrogen Reduction Reaction of VSx , 2022, Journal of Materials Chemistry A.

[8]  Vijay Singh,et al.  Mo/Co doped 1T-VS2 nanostructures as a superior bifunctional electrocatalyst for overall water splitting in alkaline media , 2022, Journal of Materials Chemistry A.

[9]  Ya-li Guo,et al.  Unveiling the Synergy of O‐Vacancy and Heterostructure over MoO3‐x/MXene for N2 Electroreduction to NH3 , 2021, Advanced Energy Materials.

[10]  Ya-li Guo,et al.  Synergistic Enhancement of Electrocatalytic Nitrogen Reduction Over Boron Nitride Quantum Dots Decorated Nb2 CTx -MXene. , 2021, Small.

[11]  Shengli Zhu,et al.  Nanoporous NiSb to Enhance Nitrogen Electroreduction via Tailoring Competitive Adsorption Sites , 2021, Advanced materials.

[12]  Yi Xie,et al.  Shedding Light on the Role of Chemical Bond in Catalysis of Nitrogen Fixation , 2021, Advanced materials.

[13]  Yi Luo,et al.  Regulating Electronic Spin Moments of Single-Atom Catalyst Sites via Single-Atom Promoter Tuning on S-Vacancy MoS2 for Efficient Nitrogen Fixation. , 2021, The journal of physical chemistry letters.

[14]  Jiaqing He,et al.  Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis , 2021, Journal of Materials Chemistry A.

[15]  Jingli Luo,et al.  Electronic Delocalization of Bismuth Oxide Induced by Sulfur Doping for Efficient CO2 Electroreduction to Formate , 2021 .

[16]  Pengjian Zuo,et al.  Modulating CoFe2O4 nanocube with oxygen vacancy and carbon wrapper towards enhanced electrocatalytic nitrogen reduction to ammonia , 2021 .

[17]  Zhiliang Liu,et al.  Enhanced electrocatalytic nitrogen reduction reaction performance by interfacial engineering of MOF-based sulfides FeNi2S4/NiS hetero-interface , 2021, Applied Catalysis B: Environmental.

[18]  Q. Fu,et al.  Boosting Selective Nitrogen Reduction via Geometric Coordination Engineering on Single‐Tungsten‐Atom Catalysts , 2021, Advanced materials.

[19]  Zhongti Sun,et al.  Boron doping and high curvature in Bi nanorolls for promoting photoelectrochemical nitrogen fixation , 2021 .

[20]  X. Qiu,et al.  Defect-Induced Ce-Doped Bi2WO6 for Efficient Electrocatalytic N2 Reduction. , 2021, ACS applied materials & interfaces.

[21]  Zhonglu Guo,et al.  Carbon doped hexagonal boron nitride nanoribbon as efficient metal-free electrochemical nitrogen reduction catalyst , 2021 .

[22]  M. Luo,et al.  Nanoporous Intermetallic Pd3Bi for Efficient Electrochemical Nitrogen Reduction , 2021, Advanced materials.

[23]  Jing Li,et al.  Dual-Site Doping Strategy for Enhancing the Structural Stability of Lithium-Rich Layered Oxides. , 2021, ACS applied materials & interfaces.

[24]  Xiaonian Li,et al.  Enhanced electrocatalytic performance of mesoporous Au-Rh bimetallic films for ammonia synthesis , 2021, Chemical Engineering Journal.

[25]  Tianxi Liu,et al.  Metal-free boron and sulphur co-doped carbon nanofibers with optimized p-band centers for highly efficient nitrogen electroreduction to ammonia , 2021 .

[26]  R. Thapa,et al.  Scalable Production of Cobalt Phthalocyanine Nanotubes: Efficient and Robust Hollow Electrocatalyst for Ammonia Synthesis at Room Temperature. , 2021, ACS nano.

[27]  Jun-min Yan,et al.  Regulating Fe2(MoO4)3 by Au Nanoparticles for Efficient N2 Electroreduction under Ambient Conditions , 2021, Advanced Energy Materials.

[28]  W. Tian,et al.  Rational construction of Au3Cu@Cu nanocages with porous core–shell heterostructured walls for enhanced electrocatalytic N2 fixation , 2021 .

[29]  L. Dai,et al.  Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Single-atomic Iron Sites. , 2021, Angewandte Chemie.

[30]  Jingxiang Zhao,et al.  Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: a computational study , 2021 .

[31]  Yufei Zhao,et al.  Efficient N2 Reduction with VS2 Electrocatalyst: Identifying the Active Sites and Unraveling the Reaction Pathway , 2021, Journal of Materials Chemistry A.

[32]  Guihua Yu,et al.  Gel-Derived Amorphous BiNi Alloy Promotes Electrocatalytic Nitrogen Fixation via Optimizing Nitrogen Adsorption and Activation. , 2020, Angewandte Chemie.

[33]  Yi Luo,et al.  Realizing a Not-Strong-Not-Weak Polarization Electric Field in Single-Atom Catalysts Sandwiched by Boron Nitride and Graphene Sheets for Efficient Nitrogen Fixation. , 2020, Journal of the American Chemical Society.

[34]  Ya-li Guo,et al.  Activating VS2 basal planes for enhanced NRR electrocatalysis: the synergistic role of S-vacancies and B dopants , 2020 .

[35]  Hongyang Zhao,et al.  Fine rhodium phosphides nanoparticles embedded in N, P dual-doped carbon film: New efficient electrocatalysts for ambient nitrogen fixation , 2020 .

[36]  Lixue Zhang,et al.  A Janus Fe-SnO2 Catalyst Enables Bifunctional Electrochemical Nitrogen Fixation. , 2020, Angewandte Chemie.

[37]  H. Tao,et al.  Electrostatic self-assembly of a AgI/Bi2Ga4O9 p–n junction photocatalyst for boosting superoxide radical generation , 2020 .

[38]  Cheng Tang,et al.  The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction. , 2020, Angewandte Chemie.

[39]  Wenjuan Yang,et al.  Hierarchical Composite of Rose-Like VS2 @S/N-Doped Carbon with Expanded (001) Planes for Superior Li-Ion Storage. , 2019, Small.

[40]  M. Antonietti,et al.  Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles , 2019, Nature Communications.

[41]  Huijun Zhao,et al.  Dramatically Enhanced Ambient Ammonia Electrosynthesis Performance by In‐Operando Created Li–S Interactions on MoS2 Electrocatalyst , 2019, Advanced Energy Materials.

[42]  Hairong Xue,et al.  Electrochemical Fabrication of Porous Au Film on Ni Foam for Nitrogen Reduction to Ammonia. , 2019, Small.

[43]  Huijun Zhao,et al.  Ambient Electrosynthesis of Ammonia on a Biomass-Derived Nitrogen-Doped Porous Carbon Electrocatalyst: Contribution of Pyridinic Nitrogen , 2019, ACS Energy Letters.

[44]  B. Tang,et al.  High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst , 2018, Nature Communications.

[45]  Ross D. Milton,et al.  Catalysts for nitrogen reduction to ammonia , 2018, Nature Catalysis.

[46]  Yu Ding,et al.  An Amorphous Noble-Metal-Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions. , 2018, Angewandte Chemie.

[47]  Yi Du,et al.  Activating Titania for Efficient Electrocatalysis by Vacancy Engineering , 2018 .

[48]  Mingyang Yang,et al.  Ultra-high electrocatalytic activity of VS2 nanoflowers for efficient hydrogen evolution reaction , 2017 .

[49]  Xin-bo Zhang,et al.  Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle , 2017, Advanced materials.

[50]  M. P. Kumar,et al.  Bifunctional Electrocatalytic Activity of Boron‐Doped Graphene Derived from Boron Carbide , 2015 .

[51]  Martin Pumera,et al.  Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing , 2014 .

[52]  Lei Zhu,et al.  Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. , 2011, Angewandte Chemie.

[53]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.