Mechanical Properties of Conjugated Polymers and Polymer‐Fullerene Composites as a Function of Molecular Structure

Despite the importance of mechanical compliance in most applications of semiconducting polymers, the effects of structural parameters of these materials on their mechanical properties are typically not emphasized. This paper examines the effect of length of the pendant group on the tensile modulus and brittleness for a series of regioregular poly(3-alkylthiophenes) (P3ATs) and their blends with a soluble fullerene derivative, PCBM. The tensile modulus decreases with increasing length of the alkyl side-chain, from 1.87 GPa for butyl side chains to 0.16 GPa for dodecyl chains. The moduli of P3AT:PCBM blends films are greater than those of the pure polymers by factors of 2–4. A theoretical model produces a trend in the effect of alkyl side chain on tensile modulus that follows closely to the experimental measurements. Tensile modulus correlates with brittleness, as the strain at which cracks appear is 6% for P3BT and >60% for P3OT. Adhesion of the P3AT film to a polydimethylsiloxane (PDMS) substrate is believed to play a role in an apparent increase in brittleness from P3OT to P3DDT. The additive 1,8-Diiodooctane (DIO) reduces the modulus of P3HT:PCBM blend by a factor of 3. These results could enable mechanically robust, flexible, and stretchable electronics.

[1]  C. Stafford,et al.  Measuring the Modulus of Soft Polymer Networks via a Buckling-Based Metrology , 2006 .

[2]  B. Kuila,et al.  Structural hierarchy in melt-processed poly(3-hexyl thiophene)-montmorillonite clay nanocomposites: novel physical, mechanical, optical, and conductivity properties. , 2006, The journal of physical chemistry. B.

[3]  Sigurd Wagner,et al.  Mechanisms of reversible stretchability of thin metal films on elastomeric substrates , 2006 .

[4]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Mikkel Jørgensen,et al.  It is all in the Pattern—High‐Efficiency Power Extraction from Polymer Solar Cells through High‐Voltage Serial Connection , 2013 .

[6]  G. Whitesides,et al.  The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer , 1999 .

[7]  S. M. Aharoni Rigid backbone polymers XXI: Stress-strain behaviour of uncrosslinked and of crosslinked rodlike polyisocyanates , 1981 .

[8]  Z. Suo,et al.  Failure by simultaneous grain growth, strain localization, and interface debonding in metal films on polymer substrates , 2009 .

[9]  R. Segalman,et al.  Tuning Polythiophene Crystallization through Systematic Side Chain Functionalization , 2010 .

[10]  Richard Moser,et al.  Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics , 2013 .

[11]  Zhenan Bao,et al.  Toward mechanically robust and intrinsically stretchable organic solar cells: Evolution of photovoltaic properties with tensile strain , 2012 .

[12]  Alex K.-Y. Jen,et al.  Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes , 2009 .

[13]  Brandon M. Vogel,et al.  Measuring molecular order in poly(3-alkylthiophene) thin films with polarizing spectroscopies. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[14]  John A Rogers,et al.  Stretchable, Curvilinear Electronics Based on Inorganic Materials , 2010, Advanced materials.

[15]  Zhenan Bao,et al.  Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends , 2010 .

[16]  John A Rogers,et al.  Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates. , 2008, Nano letters.

[17]  Zhenan Bao,et al.  Stretchable, elastic materials and devices for solar energy conversion , 2011 .

[18]  S. Beaupré,et al.  High Efficiency Polymer Solar Cells with Long Operating Lifetimes , 2011 .

[19]  Do Hwan Kim,et al.  Effect of side chain length on molecular ordering and field-effect mobility in poly(3-alkylthiophene) transistors , 2006 .

[20]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[21]  M. Rubner,et al.  Effect of Relative Humidity On the Young's Modulus of Polyelectrolyte Multilayer Films and Related Nonionic Polymers , 2008 .

[22]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[23]  B. Kuila,et al.  Physical, Mechanical, and Conductivity Properties of Poly(3-hexylthiophene)−Montmorillonite Clay Nanocomposites Produced by the Solvent Casting Method , 2004 .

[24]  C. McNeill,et al.  Influence of Alkyl Side-Chain Length on the Performance of Poly(3-alkylthiophene)/Polyfluorene All-Polymer Solar Cells , 2010 .

[25]  Willi Volksen,et al.  A buckling-based metrology for measuring the elastic moduli of polymeric thin films , 2004, Nature materials.

[26]  S. Chen,et al.  Structure/properties of conjugated conductive polymers. 1. Neutral poly(3-alkythiophene)s , 1992 .

[27]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[28]  Robert S. Loewe,et al.  A Simple Method to Prepare Head‐to‐Tail Coupled, Regioregular Poly(3‐alkylthiophenes) Using Grignard Metathesis , 1999 .

[29]  Sigurd Wagner,et al.  Stretchable Interconnects for Elastic Electronic Surfaces , 2005, Proceedings of the IEEE.

[30]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[31]  Zhigang Suo,et al.  Rupture of a highly stretchable acrylic dielectric elastomer , 2012 .

[32]  S. Wagner,et al.  Encapsulating Elastically Stretchable Neural Interfaces: Yield, Resolution, and Recording/Stimulation of Neural Activity , 2012, Advanced functional materials.

[33]  Frederik C. Krebs,et al.  Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells , 2012 .

[34]  Benjamin C. K. Tee,et al.  Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates , 2012 .

[35]  J. Shim,et al.  Polydimethylsiloxane as a macromolecular additive for enhanced performance of molecular bulk heterojunction organic solar cells. , 2011, ACS applied materials & interfaces.

[36]  J. T. Seitz The estimation of mechanical properties of polymers from molecular structure , 1993 .

[37]  Christopher M. Stafford,et al.  Characterizing Polymer Brushes via Surface Wrinkling , 2007 .

[38]  Christopher M. Stafford,et al.  Surface Wrinkling: A Versatile Platform for Measuring Thin‐Film Properties , 2011, Advanced materials.

[39]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[40]  Shixuan Yang,et al.  Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges , 2013, Sensors.

[41]  Martin Heeney,et al.  Correlations between mechanical and electrical properties of polythiophenes. , 2010, ACS nano.

[42]  Hans Arwin,et al.  Determination of Young's modulus for nanofibrillated cellulose multilayer thin films using buckling mechanics. , 2011, Biomacromolecules.

[43]  Z. Suo,et al.  Mechanics of rollable and foldable film-on-foil electronics , 1999 .

[44]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[45]  Christian M. Siket,et al.  Arrays of Ultracompliant Electrochemical Dry Gel Cells for Stretchable Electronics , 2010, Advanced materials.

[46]  Mechanical and electrical properties of highly oriented polyacetylene films , 1991 .

[47]  Stéphanie P. Lacour,et al.  Silicone substrate with in situ strain relief for stretchable thin-film transistors , 2011 .

[48]  G. Whitesides,et al.  Eutectic gallium-indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. , 2008, Angewandte Chemie.

[49]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[50]  J. Hoffman,et al.  REGIME III CRYSTALLIZATION IN POLYPROPYLENE , 1984 .

[51]  S. Jenekhe,et al.  Alkyl chain length dependence of the field-effect carrier mobility in regioregular poly(3-alkylthiophene)s , 2005 .

[52]  Mikkel Jørgensen,et al.  Fast Inline Roll‐to‐Roll Printing for Indium‐Tin‐Oxide‐Free Polymer Solar Cells Using Automatic Registration , 2013 .

[53]  René A. J. Janssen,et al.  Tough, Semiconducting Polyethylene‐poly(3‐hexylthiophene) Diblock Copolymers , 2007 .

[54]  Zhenan Bao,et al.  Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes , 2012 .

[55]  F. Wudl,et al.  Highly oriented, low-modulus materials from liquid crystalline polymers : the ultimate penalty for solubilizing alkyl side chains , 1990 .

[56]  A. Heeger,et al.  Highly conductive and stiff fibres of poly(2,5-dimethoxy-p-phenylenevinylene) prepared from soluble precursor polymer , 1991 .

[57]  C. Bettinger,et al.  Topographic substrates as strain relief features in stretchable organic thin film transistors , 2013 .

[58]  R. F. Fedors,et al.  A method for estimating both the solubility parameters and molar volumes of liquids.† Supplement , 1974 .

[59]  Manikandan Jayaraman,et al.  Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure-property relationships in conducting polymers , 1993 .

[60]  Jan Fyenbo,et al.  Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative , 2010 .

[61]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[62]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[63]  Songlin Liu,et al.  Crystallization and melting behavior of regioregular poly(3-dodecylthiophene) , 2000 .

[64]  John A. Rogers,et al.  Mechanical Buckling: Mechanics, Metrology, and Stretchable Electronics , 2009 .

[65]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[66]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[67]  Stéphanie P. Lacour,et al.  Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates , 2009 .

[68]  Niyazi Serdar Sariciftci,et al.  Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk‐Heterojunction Solar Cells , 2007 .

[69]  K. Park,et al.  Order−Disorder Transition in the Electroactive Polymer Poly(3-dodecylthiophene) , 1997 .

[70]  Valerio Causin,et al.  Crystallization and Melting Behavior of Poly(3-butylthiophene), Poly(3-octylthiophene), and Poly(3-dodecylthiophene) , 2005 .

[71]  Bethany I Lemanski,et al.  Correlating Stiffness, Ductility, and Morphology of Polymer:Fullerene Films for Solar Cell Applications , 2013 .

[72]  Guglielmo Lanzani,et al.  A polymer optoelectronic interface restores light sensitivity in blind rat retinas , 2013, Nature Photonics.

[73]  R. Dauskardt,et al.  Cohesion and device reliability in organic bulk heterojunction photovoltaic cells , 2012 .

[74]  Z. Suo,et al.  Metal films on polymer substrates stretched beyond 50 , 2007 .

[75]  Dongha Tahk,et al.  Elastic Moduli of Organic Electronic Materials by the Buckling Method , 2009 .

[76]  Richard D. McCullough,et al.  THE CHEMISTRY OF CONDUCTING POLYTHIOPHENES , 1998 .

[77]  G. Whitesides,et al.  Eutectic Gallium‐Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature , 2008 .

[78]  Suren A. Gevorgyan,et al.  Freely available OPV—The fast way to progress , 2013 .

[79]  Qibing Pei,et al.  Intrinsically Stretchable Polymer Light‐Emitting Devices Using Carbon Nanotube‐Polymer Composite Electrodes , 2011, Advanced materials.

[80]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[81]  Sudip Malik,et al.  Crystallization mechanism of regioregular poly(3‐alkyl thiophene)s , 2002 .

[82]  Z. Suo,et al.  Mechanics of thin-film transistors and solar cells on flexible substrates , 2006 .

[83]  Steve Miller,et al.  On the use of Ga-In eutectic and halogen light source for testing P3HT-PCBM organic solar cells , 2006 .

[84]  Jeff Moulton,et al.  Electrical and mechanical properties of oriented poly(3-alkylthiophenes): 2. Effect of side-chain length , 1992 .

[85]  S. Takayama,et al.  Fracture of metal coated elastomers , 2011 .

[86]  Yves Leterrier,et al.  Modelling the effect of temperature on crack onset strain of brittle coatings on polymer substrates , 2011 .