General Geometric Good Continuation: From Taylor to Laplace via Level Sets

Good continuation is the Gestalt observation that parts often group in particular ways to form coherent wholes. Perceptual integration of edges, for example, involves orientation good continuation, a property which has been exploited computationally very extensively. But more general local-global relationships, such as for shading or color, have been elusive. While Taylor’s Theorem suggests certain modeling and smoothness criteria, the consideration of level set geometry indicates a different approach. Using such first principles we derive, for the first time, a generalization of good continuation to all those visual structures that can be abstracted as scalar functions over the image plane. Based on second order differential constraints that reflect good continuation, our analysis leads to a unique class of harmonic models and a cooperative algorithm for structure inference. Among the different applications of good continuation, here we apply these results to the denoising of shading and intensity distributions and demonstrate how our approach eliminates spurious measurements while preserving both singularities and regular structure, a property that facilitates higher level processes which depend so critically on both of these classes of visual structures.

[1]  S. Grossberg,et al.  Neural networks for vision and image processing , 1992 .

[2]  F. Cao Application of the Gestalt principles to the detection of good continuations and corners in image level lines , 2004 .

[3]  Azriel Rosenfeld,et al.  General-purpose models: expectations about the unexpected , 1975, SGAR.

[4]  Gérard G. Medioni,et al.  Inferring global perceptual contours from local features , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[5]  L. Álvarez,et al.  Signal and image restoration using shock filters and anisotropic diffusion , 1994 .

[6]  B. O'neill Elementary Differential Geometry , 1966 .

[7]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[8]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[9]  Josef Kittler,et al.  Relaxation labelling algorithms - a review , 1986, Image Vis. Comput..

[10]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Azriel Rosenfeld,et al.  Human and Machine Vision , 1983 .

[12]  J. Kittler,et al.  RELAXATION LABELING ALGORITHMS - A REVIEW , 1985 .

[13]  S. Ullman,et al.  Filling-in the gaps: The shape of subjective contours and a model for their generation , 1976, Biological Cybernetics.

[14]  A. Witkin,et al.  On the Role of Structure in Vision , 1983 .

[15]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[16]  Ohad Ben-Shahar,et al.  Visual saliency and texture segregation without feature gradient , 2006, Proceedings of the National Academy of Sciences.

[17]  Gérard G. Medioni,et al.  Inference of Surfaces, 3D Curves, and Junctions From Sparse, Noisy, 3D Data , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Benjamin B. Kimia,et al.  Euler Spiral for Shape Completion , 2003, International Journal of Computer Vision.

[19]  Andrea J. van Doorn,et al.  Image Processing Done Right , 2002, ECCV.

[20]  Guillermo Sapiro,et al.  Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case , 2000, International Journal of Computer Vision.

[21]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[22]  Patrick Henry Winston,et al.  The psychology of computer vision , 1976, Pattern Recognit..

[23]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[24]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1995, Neural Computation.

[25]  P Perona,et al.  Preattentive texture discrimination with early vision mechanisms. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[26]  Shimon Ullman,et al.  Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[27]  Robert Osserman,et al.  Lectures on Minimal Surfaces. , 1991 .

[28]  R. Kimmel,et al.  Minimal surfaces: a geometric three dimensional segmentation approach , 1997 .

[29]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[30]  Steven W. Zucker,et al.  Computing with Self-Excitatory Cliques: A Model and an Application to Hyperacuity-Scale Computation in Visual Cortex , 1999, Neural Computation.

[31]  Heiko Neumann,et al.  Gradient representation and perception in the early visual system—A novel account of Mach band formation , 2006, Vision Research.

[32]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[34]  Ohad Ben-Shahar,et al.  The perceptual organization of visual flows , 2003 .

[35]  Jan J. Koenderink,et al.  Inferring three-dimensional shapes from two-dimensional silhouettes , 1987 .

[36]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  Peter Savadjiev,et al.  On the Differential Geometry of 3D Flow Patterns: Generalized Helicoids and Diffusion MRI Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[38]  Ronen Basri,et al.  Completion energies and scale , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[39]  Steven W. Zucker,et al.  Shading Flows and Scenel Bundles: A New Approach to Shape from Shading , 1992, ECCV.

[40]  Ohad Ben-Shahar,et al.  The Perceptual Organization of Texture Flow: A Contextual Inference Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[42]  C. Bajaj Algebraic Geometry and its Applications , 1994 .

[43]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[44]  Radim Sára Isophotes: The Key to Tractable Local Shading Analysis , 1995, CAIP.

[45]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[46]  Jean-Michel Morel,et al.  Geometry and Color in Natural Images , 2002, Journal of Mathematical Imaging and Vision.

[47]  W. C. Graustein Harmonic minimal surfaces , 1940 .

[48]  Marcello Pelillo,et al.  The Dynamics of Nonlinear Relaxation Labeling Processes , 1997, Journal of Mathematical Imaging and Vision.

[49]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[50]  Ohad Ben-Shahar,et al.  Hue geometry and horizontal connections , 2004, Neural Networks.

[51]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[52]  Andrea Torsello,et al.  Continuous-time relaxation labeling processes , 1999, Pattern Recognit..

[53]  James S. Duncan,et al.  Reinforcement of Linear Structure using Parametrized Relaxation Labeling , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Guillermo Sapiro,et al.  Minimal Surfaces Based Object Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Ohad Ben-Shahar,et al.  Geometrical Computations Explain Projection Patterns of Long-Range Horizontal Connections in Visual Cortex , 2004, Neural Computation.

[57]  K. Herzog,et al.  What is visual intelligence , 1997 .