Two time-efficient gibbs sampling inference algorithms for biterm topic model
暂无分享,去创建一个
[1] Qi He,et al. TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.
[2] Heng Ji,et al. Linking Tweets to News: A Framework to Enrich Short Text Data in Social Media , 2013, ACL.
[3] Shuang-Hong Yang,et al. Dimensionality Reduction and Topic Modeling: From Latent Semantic Indexing to Latent Dirichlet Allocation and Beyond , 2012, Mining Text Data.
[4] Zhoujun Li,et al. Concept-based Short Text Classification and Ranking , 2014, CIKM.
[5] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[6] Hongfei Yan,et al. Comparing Twitter and Traditional Media Using Topic Models , 2011, ECIR.
[7] Thomas Stibor,et al. Efficient Collapsed Gibbs Sampling for Latent Dirichlet Allocation , 2010, ACML.
[8] C. J. van Rijsbergen,et al. Investigating the relationship between language model perplexity and IR precision-recall measures , 2003, SIGIR.
[9] Jiafeng Guo,et al. BTM: Topic Modeling over Short Texts , 2014, IEEE Transactions on Knowledge and Data Engineering.
[10] Jihong Ouyang,et al. Supervised labeled latent Dirichlet allocation for document categorization , 2014, Applied Intelligence.
[11] Le Yu,et al. Collapsed Gibbs sampling for latent Dirichlet allocation on spark , 2014, Big Data 2014.
[12] Thomas L. Griffiths,et al. Probabilistic Topic Models , 2007 .
[13] R. Kronmal,et al. On the Alias Method for Generating Random Variables From a Discrete Distribution , 1979 .
[14] Adrian F. M. Smith,et al. Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .
[15] Alexander J. Smola,et al. Reducing the sampling complexity of topic models , 2014, KDD.
[16] Brian D. Davison,et al. Empirical study of topic modeling in Twitter , 2010, SOMA '10.
[17] Xiaohui Yan,et al. A biterm topic model for short texts , 2013, WWW.
[18] Andrew McCallum,et al. Efficient methods for topic model inference on streaming document collections , 2009, KDD.
[19] Max Welling,et al. Fast collapsed gibbs sampling for latent dirichlet allocation , 2008, KDD.
[20] R. Kohn,et al. On Gibbs sampling for state space models , 1994 .
[21] David M. Blei,et al. Probabilistic topic models , 2012, Commun. ACM.
[22] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[23] Gregor Heinrich. Parameter estimation for text analysis , 2009 .
[24] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[25] G. Marsaglia,et al. Fast Generation of Discrete Random Variables , 2004 .
[26] Tie-Yan Liu,et al. LightLDA: Big Topic Models on Modest Computer Clusters , 2014, WWW.
[27] Yoshihiko Suhara,et al. Automatically generated spam detection based on sentence-level topic information , 2013, WWW '13 Companion.
[28] J. Geweke,et al. Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling , 2001 .
[29] C. Elkan,et al. Topic Models , 2008 .
[30] Adrian F. M. Smith,et al. Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms , 1994 .
[31] Jeffrey Heer,et al. Topic Model Diagnostics: Assessing Domain Relevance via Topical Alignment , 2013, ICML.
[32] Alastair J. Walker,et al. An Efficient Method for Generating Discrete Random Variables with General Distributions , 1977, TOMS.
[33] Mehran Sahami,et al. Text Mining: Classification, Clustering, and Applications , 2009 .
[34] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[35] Hakan Ferhatosmanoglu,et al. Short text classification in twitter to improve information filtering , 2010, SIGIR.