Practical Structure Design and Control for Digital Clay

Digital Clay is a proposed novel three-dimensional computer input and output device for surface shape and haptic effects. The device consists of an array of fluidic actuators under the control of valves connected to two pressure reservoirs in a manner ultimately suitable to an implementation in MEMS technology. The challenges to build this device lie in both the kinematical structure design and the control architecture. Though it is proposed to ultimately build the actuators and control valves using MEMS technology, conventional methods are used at the current prototype stage. In this paper, several designs of the practical kinematical structure will be discussed and the proposed control architecture for the Digital Clay will be introduced.

[1]  Hideki Hashimoto,et al.  Development of 20 DOF glove type haptic interface device-Sensor Glove II , 1997, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[2]  Timothy S. Miller,et al.  The design of 3D haptic widgets , 1999, SI3D.

[3]  Imme Ebert-Uphoff,et al.  A novel mechanism for implementing multiple collocated spherical joints , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[4]  M. Mariton,et al.  Complex Control Systems , 1991 .

[5]  Yong-Kyu Yoon,et al.  Kinematically-stabilized microbubble actuator arrays , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[6]  Elaine Cohen,et al.  Direct haptic rendering of sculptured models , 1997, SI3D.

[7]  Ronald S. Fearing,et al.  Tactile feedback for teleoperation , 1993, Other Conferences.

[8]  Cagatay Basdogan,et al.  Haptics in virtual environments: taxonomy, research status, and challenges , 1997, Comput. Graph..

[9]  Haihong Zhu,et al.  Finger sculpting with Digital Clay: 3D shape input and output through a computer-controlled real surface , 2003, 2003 Shape Modeling International..

[10]  John Baillieul,et al.  Feedback Designs for Controlling Device Arrays with Communication Channel Bandwidth Constraints , 1999 .

[11]  James Tichenor,et al.  Super cilia skin: an interactive membrane , 2003, CHI Extended Abstracts.

[12]  D. D. Siljak,et al.  Decentralized Adaptive Control: Structural Conditions for Stability , 1988, 1988 American Control Conference.

[13]  Robert D. Howe,et al.  Tactile sensing and control of robotic manipulation , 1993, Adv. Robotics.

[14]  George W. Fitzmaurice,et al.  Exploring interactive curve and surface manipulation using a bend and twist sensitive input strip , 1999, SI3D.

[15]  Robert D. Howe,et al.  Remote palpation technology , 1995 .

[16]  Yukio Kawakami,et al.  PWM Position Control of a Pneumatic Cylinder. , 1996 .

[17]  M. Mariton,et al.  Control of complex systems , 1991 .

[18]  Ronald S. Fearing,et al.  Some basic issues in teletaction , 1997, Proceedings of International Conference on Robotics and Automation.

[19]  James C. Bliss A Relatively High-Resolution Reading Aid for the Blind , 1969 .

[20]  Naoki Kawakami,et al.  3D Form Display with Shape Memory Alloy , 2003, ICAT.

[21]  Wayne J. Book,et al.  Reach out and touch someone: controlling haptic manipulators near and far , 2003 .

[22]  Tsuneo Yoshikawa,et al.  Dynamic hybrid position/force control of robot manipulators-controller design and experiment , 1987, IEEE J. Robotics Autom..

[23]  Imme Ebert-Uphoff,et al.  Digital clay: architecture designs for shape-generating mechanisms , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[24]  David W. Rosen,et al.  On the Geometry of Low Degree-of-Freedom Digital Clay Human-Computer Interface Devices , 2003 .

[25]  James C. Bliss,et al.  Optical-to-Tactile Image Conversion for the Blind , 1970 .

[26]  Martin Buss,et al.  Dynamic display of distributed tactile shape information by a prototypical actuator array , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[27]  Rynson W. H. Lau,et al.  Surface deformation using the sensor glove , 1997, VRST '97.

[28]  S. Shankar Sastry,et al.  Hierarchically consistent control systems , 2000, IEEE Trans. Autom. Control..

[29]  Lucy Y. Pao,et al.  Shock and vortex visualization using a combined visual/Haptic interface , 2000 .

[30]  Hong Qin,et al.  Virtual clay: a real-time sculpting system with haptic toolkits , 2001, I3D '01.

[31]  Dinesh Manocha,et al.  Six degree-of-freedom haptic display of polygonal models , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[32]  Wayne J. Book,et al.  Speed Control and Position Estimation of Small Hydraulic Cylinders for Digital Clay Using PWM Method , 2004 .

[33]  Wayne J. Book,et al.  Control concepts for digital clay , 2003 .

[34]  Thomas H. Massie,et al.  The PHANToM Haptic Interface: A Device for Probing Virtual Objects , 1994 .

[35]  Hiroo Iwata,et al.  Project FEELEX: adding haptic surface to graphics , 2001, SIGGRAPH.

[36]  Ricardo S. Avila,et al.  A haptic interaction method for volume visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[37]  Osamu Oyama,et al.  Pressure servo system using high response solenoid valve. , 1989 .

[38]  John Kenneth Salisbury,et al.  Haptic rendering: programming touch interaction with virtual objects , 1995, I3D '95.