MPAS‐Ocean Simulation Quality for Variable‐Resolution North American Coastal Meshes

Climate model components utilizing unstructured meshes enable variableresolution, regionally enhanced simulations within global domains. Here we investigate the relationship between mesh quality and simulation statistics using the JIGSAW unstructured meshing library and the Model for Prediction Across ScalesOcean (MPASOcean) with a focus on Gulf Stream dynamics. In the base configuration, the refined region employs 8 km cells that extend 400 km from the coast of North America. This coastal refined region is embedded within a lowresolution global domain, with cell size varying latitudinally between 30 and 60 km. The resolution transition region between the refined region and background mesh is 600 km wide. Three sensitivity tests are conducted: 1) the quality of meshes is intentionally degraded so that horizontal cells are progressively more distorted; 2) the transition region from high to low resolution is steepened; and 3) resolution of the coastal refinement region is varied from 30 km to 8 km. Overall, the ocean simulations are shown to be robust to mesh resolution and quality alterations. Meshes that are substantially degraded still produce realistic currents, with Southern Ocean transports within 0.4% and Gulf Stream transports within 12% of highquality mesh results. The narrowest transition case of 100 km did not produce any spurious effects. Refined regions with high resolution produce eddy kinetic energy and sea surface height variability that are similar to the highresolution reference simulation. These results provide heuristics for the design criteria of variableresolution climate model domains.

[1]  Natalja Rakowsky,et al.  FESOM-C v.2: coastal dynamics on hybrid unstructured meshes , 2019, Geoscientific Model Development.

[2]  Sergey Danilov,et al.  Ocean Modeling on a Mesh With Resolution Following the Local Rossby Radius , 2017 .

[3]  Todd D. Ringler,et al.  An Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE‐II Forcing , 2019, Journal of Advances in Modeling Earth Systems.

[4]  R. Leung,et al.  Error Characteristics of Two Grid Refinement Approaches in Aquaplanet Simulations: MPAS-A and WRF , 2013 .

[5]  Carl Wunsch,et al.  Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data , 2000, Nature.

[6]  Qiang Wang,et al.  Designing variable ocean model resolution based on the observed ocean variability , 2016 .

[7]  J. Royer,et al.  Sensitivity of Equatorial Convection to Horizontal Resolution in Aquaplanet Simulations with a Variable-Resolution GCM , 2001 .

[8]  Changsheng Chen,et al.  An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries , 2003 .

[9]  Luke P. Van Roekel,et al.  The KPP Boundary Layer Scheme for the Ocean: Revisiting Its Formulation and Benchmarking One‐Dimensional Simulations Relative to LES , 2017, Journal of Advances in Modeling Earth Systems.

[10]  Philip W. Jones,et al.  The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution , 2019, Journal of Advances in Modeling Earth Systems.

[11]  Jens Schröter,et al.  The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model , 2014 .

[12]  William C. Skamarock,et al.  Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Flux Operators for ODE-Based Time Integration , 2011 .

[13]  D. R. Watts,et al.  Mean Antarctic Circumpolar Current transport measured in Drake Passage , 2016 .

[14]  Qiang Wang,et al.  The Finite-volumE Sea ice–Ocean Model (FESOM2) , 2016 .

[15]  G. Danabasoglu,et al.  The KPP boundary layer scheme: revisiting its formulation and benchmarking one-dimensional ocean simulations relative to LES , 2017 .

[16]  Todd D. Ringler,et al.  Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate method in the MPAS-Ocean model , 2015 .

[17]  Robert L. Higdon,et al.  A two-level time-stepping method for layered ocean circulation models: further development and testing , 2005 .

[18]  William C. Skamarock,et al.  A Comparison of Mesh Refinement in the Global MPAS-A and WRF Models Using an Idealized Normal-Mode Baroclinic Wave Simulation , 2014 .

[19]  Philip W. Jones,et al.  A multi-resolution approach to global ocean modeling , 2013 .

[20]  J. Lillibridge,et al.  On the long‐term stability of Gulf Stream transport based on 20 years of direct measurements , 2014 .

[21]  Jean-François Remacle,et al.  Fast and robust mesh generation on the sphere Application to coastal domains , 2016, Comput. Aided Des..

[22]  Chun Zhao,et al.  Exploring the impacts of physics and resolution on aqua‐planet simulations from a nonhydrostatic global variable‐resolution modeling framework , 2016 .

[23]  Frank O. Bryan,et al.  Coordinated Ocean-ice Reference Experiments (COREs) , 2009 .

[24]  T. Rossby,et al.  The Structure and Transport of the Gulf Stream at 73°W , 1985 .

[25]  M. Vousdoukas,et al.  Towards robust pan-European storm surge forecasting , 2019, Ocean Modelling.

[26]  Michael Steele,et al.  PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean , 2001 .

[27]  Sergey Danilov,et al.  Sensitivity of deep ocean biases to horizontal resolution in prototype CMIP6 simulations with AWI-CM1.0 , 2018, Geoscientific Model Development.

[28]  M. Taylor,et al.  Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model , 2015 .

[29]  Pierre De Mey-Frémaux,et al.  Physical-biogeochemical regional ocean model uncertainties stemming from stochastic parameterizations and potential impact on data assimilation , 2019 .

[30]  Pedro S. Peixoto,et al.  Accuracy analysis of mimetic finite volume operators on geodesic grids and a consistent alternative , 2016, J. Comput. Phys..

[31]  Darren Engwirda,et al.  Locally-orthogonal, unstructured grid-generation for general circulation modelling on the sphere , 2016, ArXiv.

[32]  Shanon M. Reckinger,et al.  A study of overflow simulations using MPAS-Ocean: Vertical grids, resolution, and viscosity , 2015 .

[33]  Darren Engwirda,et al.  Generalised primal-dual grids for unstructured co-volume schemes , 2017, J. Comput. Phys..

[34]  Philip Browne,et al.  Mesh adaptation on the sphere using optimal transport and the numerical solution of a Monge-Ampère type equation , 2015, J. Comput. Phys..

[35]  Todd D. Ringler,et al.  Parallel algorithms for planar and spherical Delaunay construction with an application to centroidal Voronoi tessellations , 2013 .

[36]  Andrew T. T. McRae,et al.  Optimal-Transport-Based Mesh Adaptivity on the Plane and Sphere Using Finite Elements , 2016, SIAM J. Sci. Comput..

[37]  S. Danilov,et al.  Resolving eddies by local mesh refinement , 2015 .

[38]  T. Jung,et al.  A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4 , 2017 .

[39]  Adam S. Candy,et al.  Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models , 2017, ArXiv.

[40]  Peter Korn,et al.  Atmosphere and ocean modeling on grids of variable resolution - A 2D case study , 2014 .

[41]  Babatunde J. Abiodun,et al.  Implementation of a non-hydrostatic, adaptive-grid dynamics core in CAM3. Part I: comparison of dynamics cores in aqua-planet simulations , 2008 .

[42]  Craig M. Lee,et al.  Studies of the Canadian Arctic Archipelago water transport and its relationship to basin‐local forcings: Results from AO‐FVCOM , 2016 .

[43]  Jonathan V. Durgadoo,et al.  Simulating the Agulhas system in global ocean models – nesting vs. multi-resolution unstructured meshes , 2018 .

[44]  Arthur A. Mirin,et al.  Exploring a Global Multiresolution Modeling Approach Using Aquaplanet Simulations , 2013 .

[45]  Patrick Scholz,et al.  Assessment of the Finite VolumE Sea Ice Ocean Model (FESOM2.0), Part I: Description of selected key model elements and comparison to its predecessor version , 2019 .

[46]  Cian R. Wilson,et al.  Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics , 2011 .

[47]  Lili Ju,et al.  Fast spherical centroidal Voronoi mesh generation: A Lloyd-preconditioned LBFGS method in parallel , 2017, J. Comput. Phys..

[48]  Fei Ye,et al.  Seamless cross-scale modeling with SCHISM , 2016 .

[49]  C. Davis,et al.  Model study of nutrient and phytoplankton dynamics in the Gulf of Maine: patterns and drivers for seasonal and interannual variability , 2015 .

[50]  Peter Korn,et al.  Formulation of an unstructured grid model for global ocean dynamics , 2017, J. Comput. Phys..

[51]  William C. Skamarock,et al.  A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids , 2010, J. Comput. Phys..

[52]  Tuomas Kärnä,et al.  A baroclinic discontinuous Galerkin finite element model for coastal flows , 2013 .

[53]  Jean-François Remacle,et al.  Multiscale mesh generation on the sphere , 2008 .

[54]  Yinglong J. Zhang,et al.  A 3D unstructured-grid model for Chesapeake Bay: Importance of bathymetry , 2018, Ocean Modelling.

[55]  David M. Fratantoni,et al.  On the Atlantic inflow to the Caribbean Sea , 2002 .

[56]  Jon Derek Loftis,et al.  The Storm Surge and Sub-Grid Inundation Modeling in New York City during Hurricane Sandy , 2014 .

[57]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[58]  Darren Engwirda,et al.  Off-centre Steiner points for Delaunay-refinement on curved surfaces , 2015, Comput. Aided Des..

[59]  T. Ringler,et al.  Impact of Variable-Resolution Meshes on Midlatitude Baroclinic Eddies Using CAM-MPAS-A , 2014 .

[60]  E. Blayo,et al.  Two-way embedding algorithms: a review , 2008 .

[61]  Michael Holst,et al.  Efficient mesh optimization schemes based on Optimal Delaunay Triangulations , 2011 .

[62]  Chun Zhao,et al.  Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPAS‐CAM4 variable‐resolution simulations , 2016 .