Anti-synchronization of Identical Chaotic Systems Using Sliding Mode Control and an Application to Vaidyanathan-Madhavan Chaotic Systems

Anti-synchronization is an important type of synchronization of a pair of chaotic systems called the master and slave systems. The anti-synchronization characterizes the asymptotic vanishing of the sum of the states of the master and slave systems. In other words, anti-synchronization of master and slave system is said to occur when the states of the synchronized systems have the same absolute values but opposite signs. Anti-synchronization has applications in science and engineering. This work derives a general result for the anti-synchronization of identical chaotic systems using sliding mode control. The main result has been proved using Lyapunov stability theory. Sliding mode control (SMC) is well-known as a robust approach and useful for controller design in systems with parameter uncertainties. Next, as an application of the main result, anti-synchronizing controller has been designed for Vaidyanathan–Madhavan chaotic systems (2013). The Lyapunov exponents of the Vaidyanathan–Madhavan chaotic system are found as \(L_1 = 3.2226, L_2 = 0\) and \(L_3 = -30.3406\) and the Lyapunov dimension of the novel chaotic system is found as \(D_L = 2.1095\). The maximal Lyapunov exponent of the Vaidyanathan–Madhavan chaotic system is \(L_1 = 3.2226\). As an application of the general result derived in this work, a sliding mode controller is derived for the anti-synchronization of the identical Vaidyanathan–Madhavan chaotic systems. MATLAB simulations have been provided to illustrate the qualitative properties of the novel 3-D chaotic system and the anti-synchronizer results for the identical novel 3-D chaotic systems.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  Wei Lu,et al.  Sliding mode control of a shunt hybrid active power filter based on the inverse system method , 2014 .

[3]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[4]  Guoliang Cai,et al.  Chaos Synchronization of a New Chaotic System via Nonlinear Control , 2007 .

[5]  Y. H. Liu,et al.  Theoretic and Numerical Study of a New Chaotic System , 2010, Intell. Inf. Manag..

[6]  A. Zinober Variable Structure and Lyapunov Control , 1994 .

[7]  Muhammad Khurram Khan,et al.  Chaos-based secure satellite imagery cryptosystem , 2010, Comput. Math. Appl..

[8]  Mehran Bidarvatan,et al.  Cycle-to-cycle modeling and sliding mode control of blended-fuel HCCI engine , 2014 .

[9]  K. A. Shore,et al.  Cascaded and adaptive chaos synchronization in multiple time-delay laser systems , 2009 .

[10]  Dan Wei,et al.  Global exponential synchronization of nonlinear time-delay Lur'e systems via delayed impulsive control , 2014, Commun. Nonlinear Sci. Numer. Simul..

[11]  Eva Kaslik,et al.  Nonlinear dynamics and chaos in fractional-order neural networks , 2012, Neural Networks.

[12]  M. Witte,et al.  Chaos and predicting varix hemorrhage. , 1991, Medical hypotheses.

[13]  V. Sundarapandian,et al.  Analysis, control, synchronization, and circuit design of a novel chaotic system , 2012, Math. Comput. Model..

[14]  Jian Huang,et al.  Adaptive synchronization between different hyperchaotic systems with fully uncertain parameters , 2008 .

[15]  K. A. Shore,et al.  Impact of modulated multiple optical feedback time delays on laser diode chaos synchronization. , 2009 .

[16]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Wei Xing Zheng,et al.  Global chaos synchronization with channel time-delay , 2004 .

[18]  Qintao Gan,et al.  Synchronization of chaotic neural networks with time delay in the leakage term and parametric uncertainties based on sampled-data control , 2012, J. Frankl. Inst..

[19]  Julien Clinton Sprott,et al.  Competition with evolution in ecology and finance , 2004 .

[20]  Ioannis M. Kyprianidis,et al.  Experimental investigation on coverage performance of a chaotic autonomous mobile robot , 2013, Robotics Auton. Syst..

[21]  Vinod Patidar,et al.  Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping , 2012 .

[22]  Pierre Gaspard,et al.  Microscopic chaos and chemical reactions , 1999 .

[23]  Jean-Pierre Barbot,et al.  Sliding Mode Control In Engineering , 2002 .

[24]  Vaidyanathan Sundarapandian,et al.  Output Regulation of the Liu Chaotic System , 2011 .

[25]  I. Suárez,et al.  Mastering chaos in ecology , 1999 .

[26]  Sundarapandian Vaidyanathan,et al.  ADAPTIVE BACKSTEPPING CONTROLLER AND SYNCHRONIZER DESIGN FOR ARNEODO CHAOTIC SYSTEM WITH UNKNOWN PARAMETERS , 2012 .

[27]  Ulrich Nehmzow,et al.  Quantitative description of robot-environment interaction using chaos theory , 2005, Robotics Auton. Syst..

[28]  Wuneng Zhou,et al.  On dynamics analysis of a new chaotic attractor , 2008 .

[29]  Zhen Wang,et al.  Chaos and hyperchaos in fractional-order cellular neural networks , 2012, Neurocomputing.

[30]  Dequan Li,et al.  A three-scroll chaotic attractor , 2008 .

[31]  Halim Alwi,et al.  A fault tolerant control allocation scheme with output integral sliding modes , 2013, Autom..

[32]  Alain Arneodo,et al.  Possible new strange attractors with spiral structure , 1981 .

[33]  S. Vaidyanathan Analysis and Adaptive Synchronization of Two Novel Chaotic Systems with Hyperboli c Sinusoidal and Cosinusoidal Nonlinearity and Unknown Parameters , 2013 .

[34]  V. Sundarapan,et al.  Generalized Projective Synchronization of Two-Scroll Systems via Adaptive Control , 2012 .

[35]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[36]  Lei Zhou,et al.  Synchronization of chaotic Lur'e systems with quantized sampled-data controller , 2014, Commun. Nonlinear Sci. Numer. Simul..

[37]  W. Wilson,et al.  Individual-based chaos: extensions of the discrete logistic model. , 2013, Journal of theoretical biology.

[38]  Er-Wei Bai,et al.  Chaos synchronization in RCL-shunted Josephson junction via active control , 2007 .

[39]  José Manoel Balthazar,et al.  On control and synchronization in chaotic and hyperchaotic systems via linear feedback control , 2008 .

[40]  Nan Li,et al.  Synchronization for general complex dynamical networks with sampled-data , 2011, Neurocomputing.

[41]  Xi Chen,et al.  Traceable content protection based on chaos and neural networks , 2011, Appl. Soft Comput..

[42]  Guohui Yuan,et al.  Generation and synchronization of feedback-induced chaos in semiconductor ring lasers by injection-locking , 2014 .

[43]  张超,et al.  Synchronization between two different chaotic systems with nonlinear feedback control , 2007 .

[44]  K.Murali,et al.  Secure communication using a compound signal from generalized synchronizable chaotic systems , 1997, chao-dyn/9709025.

[45]  Marios Kyriazis Applications of chaos theory to the molecular biology of aging , 1991, Experimental Gerontology.

[46]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[47]  Vadim I. Utkin,et al.  Sliding Modes and their Application in Variable Structure Systems , 1978 .

[48]  Hsien-Keng Chen,et al.  Anti-control of chaos in rigid body motion , 2004 .

[49]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[50]  Valery Petrov,et al.  Controlling chaos in the Belousov—Zhabotinsky reaction , 1993, Nature.

[51]  Chitralekha Mahanta,et al.  Adaptive second order terminal sliding mode controller for robotic manipulators , 2014, J. Frankl. Inst..

[52]  Juebang Yu,et al.  Chaos synchronization using single variable feedback based on backstepping method , 2004 .

[53]  Z. Qu Chaos in the genesis and maintenance of cardiac arrhythmias. , 2011, Progress in biophysics and molecular biology.

[54]  Wei Lin,et al.  Adaptive chaos control and synchronization in only locally Lipschitz systems , 2008 .

[55]  Safya Belghith,et al.  Cryptanalysis of a chaos-based cryptosystem on DSP , 2011 .

[56]  Sundarapandian Vaidyanathan,et al.  Anti-synchronization of four-wing chaotic systems via sliding mode control , 2012, Int. J. Autom. Comput..

[57]  Xinghuo Yu,et al.  Chattering free full-order sliding-mode control , 2014, Autom..

[58]  Qidan Zhu,et al.  Adaptive chatter free sliding mode control for a class of uncertain chaotic systems , 2014, Appl. Math. Comput..

[59]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[60]  Faqiang Wang,et al.  A new criterion for chaos and hyperchaos synchronization using linear feedback control , 2006 .

[61]  O. Rössler An equation for continuous chaos , 1976 .

[62]  D. Guégan,et al.  Chaos in economics and finance , 2009, Annu. Rev. Control..

[63]  G. A. Adebayo,et al.  Generalized control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design , 2010 .

[64]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[65]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[66]  Zhi-Hong Guan,et al.  Adaptive synchronization between two different hyperchaotic systems , 2008 .

[67]  P. R. Ouyang,et al.  PD with sliding mode control for trajectory tracking of robotic system , 2014 .

[68]  Wei Pan,et al.  Enhanced chaos synchronization and communication in cascade-coupled semiconductor ring lasers , 2014, Commun. Nonlinear Sci. Numer. Simul..

[69]  Jin Zhou,et al.  Synchronization of sampled-data coupled harmonic oscillators with control inputs missing , 2012, Syst. Control. Lett..

[70]  U. Itkis,et al.  Control systems of variable structure , 1976 .

[71]  Swagatam Das,et al.  Stability and chaos analysis of a novel swarm dynamics with applications to multi-agent systems , 2014, Eng. Appl. Artif. Intell..

[72]  Ashraf A. Zaher,et al.  On the design of chaos-based secure communication systems , 2011 .

[73]  Kyandoghere Kyamakya,et al.  Dynamical properties and chaos synchronization of improved Colpitts oscillators , 2012 .

[74]  Hanlin He,et al.  Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant , 2014, Appl. Math. Comput..