Laser transmission welding of unreinforced nylon 6

Laser transmission welding is a relatively new joining process in which laser energy is used to melt polymer at the interface between laser-transparent and laser-absorbing components. This study examined the effect of diode laser speed, power, beam area and weld pressure on the meltdown, microstructure and weld strength of T-joints made from unreinforced nylon 6. The results show that meltdown increases strongly with line energy and is also affected by beam area and weld pressure. For the range of parameters selected, the strength was observed to depend largely on the ability to make welds free of local stress concentrations and degraded material. This can be achieved by obtaining a relatively uniform power flux distribution along the weld-line cross-section.